Study on noise attenuation of seismic data based on CEEMDAN and permutation entropy

Hai SU, HongRan WANG, ZiQi DONG, ZhongDong DU, WeiBin DENG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 1987-2000.

PDF(16350 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(16350 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 1987-2000. DOI: 10.6038/pg2025II0315

Study on noise attenuation of seismic data based on CEEMDAN and permutation entropy

Author information +
History +

Abstract

Seismic exploration has gradually turned to deep formation and complex geological structures. Because the heterogeneity of the formation medium affects the propagation of reflected waves, the seismic data have the property of complex interference. It is difficult to achieve the requirements of high-precision image. The related methods of data processing have been widely researched and applied with the development of EMD algorithm. This algorithm has also improved CEEMDAN algorithm, which effectively solves the mode mixing problem of EMD. But CEEMDAN algorithm still has shortcoming in the ability to filter noise. The algorithm based on CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise) and permutation entropy is using by the seismic data having the property low signal-to-noise ratio. Firstly, the seismic signals were decomposed by CEEMDAN to obtain Intrinsic Mode Functions (IMF) from high frequency to low frequency components. Then, the IMF components are sorted using permutation entropy to retain useful information for reconstruction.Subsequently, the reconstructed signal is decomposed using CEEMDAN, and the IMF components suitable for reconstruction are selected by comparing parameters such as approximation degree, smoothness, and objective function value. This achieves effective suppression of complex interference signals by combining the permutation entropy algorithm. The results show that compared with the traditional EEMD algorithm, the CEEMDAN-PE algorithm has higher computational efficiency, not only solves the mode mixing problem, but also effectively protects the high-frequency effective signal of the reflected wave while suppressing noise. Moreover, it can effectively screen out abnormal signals by determining whether they exceed the permutation entropy value and whether the objective function value is closer to zero, ensure the accuracy and stability of the reconstructed signal, and provide an effective processing method for improving the signal-to-noise ratio of seismic signals.

Key words

Seismic image / Empirical mode decomposition / Permutation entropy / Noise suppression / Mode mixing

Cite this article

Download Citations
Hai SU , HongRan WANG , ZiQi DONG , et al . Study on noise attenuation of seismic data based on CEEMDAN and permutation entropy[J]. Progress in Geophysics. 2025, 40(5): 1987-2000 https://doi.org/10.6038/pg2025II0315

References

Bandt C , Pompe B . Permutation entropy: a natural complexity measure for time series. Physical Review Letters, 2002, 88: 174102
Chen Y J , Cheng H , Gong E P , et al. Suppression of random microseismic noise based on complete ensemble empirical mode decomposition with adaptive noise of TFPF. Oil Geophysical Prospecting, 2021, 56(2): 234- 241.
Dong L Q , Wang D Y , Cheng Z H . Curvelet threshold denoising method based on complementary ensemble empirical mode decomposition. Progress in Geophysics, 2016, 31(6): 2521- 2525.
Huang N E , Shen Z , Long S R , et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903- 995.
Luo H M , Song W Q , Xing Y R , et al. Seismic weak signal enhancement processing method based on improved empirical mode decomposition. Progress in Geophysics, 2019, 34(1): 167- 173.
Mijović B , De Vos M , Gligorijević I , et al. Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Transactions on Biomedical Engineering, 2010, 57(9): 2188- 2196.
Qin X , Cai J C , Liu S Y , et al. Microseismic data denoising method based on EMD mutual information entropy and synchrosqueezing transform. Geophysical Prospecting for Petroleum, 2017, 56(5): 658- 666.
Shang P P , Li P , Yang A Q , et al. Seismic high-resolution time-frequency analysis based on CEEMDAN. Geophysical Prospecting for Petroleum, 2019, 58(4): 547- 554.
Su H , Gao B B , Deng W B , et al. Study on migration imaging technology in western margin of Ordos Basin. Progress in Geophysics, 2021, 36(2): 662- 667.
Torres M E, Colominas M A, Schlotthauer G, et al. 2011. A complete ensemble empirical mode decomposition with adaptive noise. //2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic: IEEE, 4144-4147.
Wen Z P , Fang J X , Liu J , et al. Seismic random noise attenuation based on CEEMDAN and SWT. Progress in Geophysics, 2019, 34(3): 949- 960.
Wu Z H , Huang N E . Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 2009, 1(1): 1- 41.
Yang K , Liu W . Random noise attenuation of seismic signal based on improved EMD. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(4): 75- 82.
Yeh J R , Shieh J S , Huang N E . Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Advances in Adaptive Data Analysis, 2010, 2(2): 135- 156.
Zhang X L , Cao L Y , Chen Y , et al. Microseismic signal denoising by combining variational mode decomposition with permutation entropy. Applied Geophysics, 2022, 19(1): 65- 80.
Zhao Y , Yue Y X , Huang J L , et al. CEEMD and wavelet transform jointed de-noising method. Progress in Geophysics, 2015, 30(6): 2870- 2877.
毅军 , , 恩普 , 等. 基于CEEMDAN的时频峰值滤波微地震随机噪声压制方法. 石油地球物理勘探, 2021, 56(2): 234- 241.
烈乾 , 德营 , 宗华 . 基于CEEMD的曲波阈值去噪方法. 地球物理学进展, 2016, 31(6): 2521- 2525.
红梅 , 维琪 , 漪冉 , 等. 基于改进经验模态分解的地震弱信号增强处理方法. 地球物理学进展, 2019, 34(1): 167- 173.
, 建超 , 少勇 , 等. 基于经验模态分解互信息熵与同步压缩变换的微地震信号去噪方法研究. 石油物探, 2017, 56(5): 658- 666.
平萍 , , 安琪 , 等. 基于CEEMDAN的地震信号高分辨率时频分析方法. 石油物探, 2019, 58(4): 547- 554.
, 棒棒 , 卫斌 , 等. 鄂尔多斯盆地西缘地区偏移成像技术研究. 地球物理学进展, 2021, 36(2): 662- 667.
志平 , 江雄 , , 等. 基于CEEMDAN和SWT的地震信号随机噪声压制. 地球物理学进展, 2019, 34(3): 949- 960.
, . 基于改进EMD的地震信号去噪. 西南石油大学学报(自然科学版), 2012, 34(4): 75- 82.
, 友喜 , 健良 , 等. CEEMD与小波变换联合去噪方法研究. 地球物理学进展, 2015, 30(6): 2870- 2877.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(16350 KB)

Accesses

Citation

Detail

Sections
Recommended

/