Influence of amplitude spectrum normalization method on the analysis results of seismic acquisition data

GuoBin CAO, Tao LIU, Lü LÜ, Xue BAI, YongWu LIU, JiDong WEI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2097-2104.

PDF(4582 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4582 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2097-2104. DOI: 10.6038/pg2025II0318

Influence of amplitude spectrum normalization method on the analysis results of seismic acquisition data

Author information +
History +

Abstract

Amplitude spectrum is one of the most commonly used mathematical quantitative analysis tools in seismic data analysis, and its theoretical basis is the Fourier transform. Through the amplitude spectrum analysis, we can convert the time domain data to the frequency domain to observe and compare the data from the two aspects of amplitude and phase. At present, according to the different calculation methods, the spectral analysis of the time domain signal after the Fourier transform mainly has different forms, such as amplitude spectrum, power spectral density, and noise density. This paper according to the corresponding calculation formula of three frequency spectrum dimensions of the form firstly, and then classify the normalization method commonly used in data analysis, and an analysis was conducted on the amplitude spectra of velocity\acceleration geophone, combination effects, and coupling effects. It is believed that when conducting spectral analysis, the dimensions of spectral analysis should be clearly defined, and then compared to reveal the physical properties of spectral analysis results, clarify the mathematical relationship between data performance and physical background, ensure data quality, and improve exploration effectiveness.

Key words

Seismic data / Amplitude spectrum / Sensor array / Geophone-ground coupling / Geophone

Cite this article

Download Citations
GuoBin CAO , Tao LIU , Lü LÜ , et al . Influence of amplitude spectrum normalization method on the analysis results of seismic acquisition data[J]. Progress in Geophysics. 2025, 40(5): 2097-2104 https://doi.org/10.6038/pg2025II0318

References

Bai X . Development and application of quantitative analysis software for low signal-to-noise ratio prestack data. Chinese Journal of Engineering Geophysics, 2023, 20 (1): 114- 121.
Cao G B , Liu T , Bai X , et al. Approach to calibrate the geophone specifications via micro box wave test. Progress in Geophysics, 2024, 39 (2): 828- 838.
Cheng Q S . Digital Signal Processing. Beijing: Peking University Press, 2003
Fougerat A, Guérineau L, Tellier N. 2018. High-quality signal recording down to 0.001 Hz with standard MEMS accelerometers. //88th Ann. Internat Mtg., Soc. Expi. Geophys. Expanded Abstracts, 196-200, doi: 10.1190/segam2018-2995544.1.
Li Q Z . The evaluation of filtering and deconvolution effects by S/N spectrum analysis-a study of S/N ratio and resolution in frequency domain. Oil Geophysical Prospecting, 1986, 21 (6): 575- 601.
Li Z C , Zhang J H . Seismic Data Processing Methods. Dongying: Petroleum University Press, 2004
Lu J M . Principles of Seismic Prospecting. Beijing: Petroleum University Press, 1991 130-154
S Y , Liu S . Land equipment for broadband seismic data acquisition and the application. Computerized Tomography Theory and Applications, 2019, 28 (1): 99- 110.
Peterson J R . Observations and modeling of seismic background noise. Reston: USGS, 1993
Qi P F. 2020. The study of high precision spectral analysis methods on seismic data[Ph. D. thesis](in Chinese). Beijing: China University of Geosciences (Beijing). doi: 10.27493/d.cnki.gzdzy.2020.001721.
Shunhiko O . Introduction to Spectral Analysis of Ground Motion. 2nd ed Beijing: Seismological Press, 2008
Sun X P , Li L F , Guo Z H . Research on quantitative evaluation of seismic original records. Journal of Petroleum and Natural Gas (Journal of Jianghan Petroleum Institute), 2006, 28 (3): 276- 278.
Wei J D . The vibration mechanics explanation for ground-geophone coupling effect, mode identification and its impacting to seismic data and eliminating. Progress in Geophysics, 2013, 28 (4): 1983- 1995.
Wei J D . Large-scale measuring and correction of geophone-ground coupling effect in field. Oil Geophysical Prospecting, 2017, 52 (3): 411- 417.
Wei J D . Comparison of recording accuracy between analog geophone and MEMS accelerometer and their influence to the S/N ratio. Progress in Geophysics, 2018, 33 (4): 1726- 1733.
Wei J D . Seismic data description: velocity or acceleration. Oil Geophysical Prospecting, 2019, 54 (2): 243- 253.
Xia Y , Xu H C , et al. Features and application analysis of MEMS digital sensor. Equipment for Geophysical Prospecting, 2013, 23 (4): 215- 220.
Xu L L , Gong C C , Wang M X , et al. Comparison of signal-to-noise ratio of velocimeter and accelerometer. Progress in Geophysics, 2023, 38 (2): 891- 899.
Zhang J H , Zang S T , Zhou Z X , et al. Quantitative computation and comparison of S/N ratio in seismic data. Oil Geophysical Prospecting, 2009, 44 (4): 481- 486.
Zou F Q , Liu B , Tong S Y , et al. The application effects of digital geophone in seismic exploration. Marine Geology & Quaternary Geology, 2008, 28 (3): 133- 138.
. 低信噪比叠前数据定量分析软件研发与应用. 工程地球物理学报, 2023, 20 (1): 114- 121.
国滨 , , , 等. 一种利用微型盒子波进行检波器性能参数标定的方法. 地球物理学进展, 2024, 39 (2): 828- 838.
乾生 . 数字信号处理. 北京: 北京大学出版社, 2003
大崎 顺彦 . 地震动的谱分析入门. 2版 北京: 地震出版社, 2008
庆忠 . 从信噪比谱分析看滤波及反褶积的效果——频率域信噪比与分辨率的研究. 石油地球物理勘探, 1986, 21 (6): 575- 601.
振春 , 军华 . 地震数据处理方法. 东营: 石油大学出版社, 2004
基孟 . 地震勘探原理. 北京: 石油大学出版社, 1991 130-154
淑英 , . 用于陆上宽频地震采集的设备及应用实例. CT理论与应用研究, 2019, 28 (1): 99- 110.
戚鹏飞. 2020. 地震资料高精度谱分析方法研究[博士论文]. 北京: 中国地质大学(北京), doi: 10.27493/d.cnki.gzdzy.2020.001721.
喜平 , 凌锋 , 振华 . 地震原始记录量化评价研究. 石油天然气学报(江汉石油学院学报), 2006, 28 (3): 276- 278.
继东 . 检波器-大地耦合系统特性的振动力学解释、模态参数识别及其对地震资料的影响与消除. 地球物理学进展, 2013, 28 (4): 1983- 1995.
继东 . 检波器—大地耦合响应的野外规模测量与衰减方法. 石油地球物理勘探, 2017, 52 (3): 411- 417.
继东 . 地震数据表征: 速度与加速度. 石油地球物理勘探, 2019, 54 (2): 243- 253.
继东 . 模拟与数字检波器记录精度对比及其对信噪比的影响. 地球物理学进展, 2018, 33 (4): 1726- 1733.
, 宏朝 . MEMS数字检波器技术特点及应用效果分析. 物探装备, 2013, 23 (4): 215- 220.
雷良 , 长春 , 明星 , 等. 速度型与加速度型检波器的信噪比比较. 地球物理学进展, 2023, 38 (2): 891- 899.
军华 , 胜涛 , 振晓 , 等. 地震资料信噪比定量计算及方法比较. 石油地球物理勘探, 2009, 44 (4): 481- 486.
奋勤 , , 思友 , 等. 数字检波器在地震勘探中的应用效果. 海洋地质与第四纪地质, 2008, 28 (3): 133- 138.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(4582 KB)

Accesses

Citation

Detail

Sections
Recommended

/