Research on local gravity field modelling method based on residual terrain model

PanPan ZHANG, YanGe MA, QuanBin ZHANG, ZhenYao LIU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1361-1371.

PDF(10887 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10887 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1361-1371. DOI: 10.6038/pg2025II0328

Research on local gravity field modelling method based on residual terrain model

Author information +
History +

Abstract

Aiming at the problem of insufficient spatial resolution of the existing high-degree gravity field models, the study takes the Colorado mountain region in the 1 cm geoid experiment initiated by the International Association of Geodesy as the research object. The spectral characteristics of the EGM2008, EIGEN_6C4, GECO, SGG-UGM-1, SGG-UGM-2 and XGM2019e_2159 models are analyzed. The six high-degree gravity field models are extended using the Residual Terrain Model (RTM) to construct a high-resolution local gravity field for the Colorado region. Finally, the validity of the RTM is checked using measured GNSS/levelling, gravity disturbance, and the Deflection of the Vertical (DOV) data. The results show that the cumulative geoid degree errors of GECO, EIGEN_6C4, SGG-UGM-1, SGG-UGM-2 and XGM2019e_2159 models are smaller than that of EGM2008 model. Before the degree 200 (long wavelength), the signal-to-noise ratios of EIGEN_6C4, GECO, SGG-UGM-1, SGG-UGM-2, and XGM2019e_2159 models show little difference and are all superior to the signal-to-noise ratio of the EGM2008 model. Between the degree 200 and 370 (medium wavelength), the SGG-UGM-2 model has the best signal-to-noise ratio, and after approximately degree 370 (short wavelength), the signal-to-noise ratio of the EIGEN_6C4 model is significantly better than the other five high-order models. The average calculation accuracy of the height anomaly, gravity disturbance, east-west vertical deflection, and north-south vertical deflection of the six high-degree gravity field models compensated by RTM has been improved by about 7.1%、47.5%、65.9%和51%, respectively. The EIEGN _6C4 model has the best accuracy, with about 7.7%、49.7%、70.4%和54.2% improvement in the calculation accuracy of the height anomalies, gravity disturbance, east-west vertical deflection, and north-south vertical deflection, respectively, which demonstrates the validity and reliability of the RTM in recovering the high-frequency gravity field.

Key words

High-degree gravity field model / Residual Terrain Model (RTM) / High-frequency gravity field / Accuracy improvement / Colorado mountain region

Cite this article

Download Citations
PanPan ZHANG , YanGe MA , QuanBin ZHANG , et al. Research on local gravity field modelling method based on residual terrain model[J]. Progress in Geophysics. 2025, 40(4): 1361-1371 https://doi.org/10.6038/pg2025II0328

References

Bucha B , Janák J . A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders: efficient computation at irregular surfaces. Computers & Geosciences, 2014, 66: 219- 227.
Chen L , You W . Analysis on the applicability of residual terrain model. Science of Surveying and Mapping, 2023, 48 (8): 51- 56.
Forsberg R. 1984. A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling. Columbus: The Ohio State University.
Förste C , Bruinsma S L , Abrikosov O , et al. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, 2014,
Gilardoni M , Reguzzoni M , Sampietro D . GECO: a global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 2016, 60 (2): 228- 247.
Gruber T , Willberg M . Signal and error assessment of GOCE-based high resolution gravity field models. Journal of Geodetic Science, 2019, 9 (1): 71- 86.
He L , Chu Y H , Xu X Y , et al. Evaluation of the GRACE/GOCE Global Geopotential Model on estimation of the geopotential value for the China vertical datum of 1985. Chinese Journal of Geophysics, 2019, 62 (6): 2016- 2026.
Hirt C , Featherstone W E , Marti U . Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of Gravity Data. Journal of Geodesy, 2010, 84 (9): 557- 567.
Hirt C . RTM gravity forward-modeling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone. Marine Geodesy, 2013, 36 (2): 183- 202.
Hirt C , Kuhn M , Claessens S , et al. Study of the Earth's short-scale gravity field using the ERTM2160 gravity model. Computers & Geosciences, 2014, 73: 71- 80.
Hirt C , Bucha B , Yang M , et al. A numerical study of residual terrain modelling (RTM) techniques and the harmonic correction using ultra-high-degree spectral gravity modelling. Journal of Geodesy, 2019, 93 (9): 1469- 1486.
Huang Z Y , Li S S , Li S Z , et al. SCA/ACC alignment algorithm for GRACE-FO. Progress in Geophysics, 2024, 39 (1): 87- 99.
Jarvis A, Reuter H, Nelson A, et al. (2008-11). SRTM 90 m DEM digital elevation database. https:/srtm.csi.cgiar.org.
Liang W , Xu X Y , Li J C , et al. The determination of an ultra-high gravity field model SGG-UGM-l by Combining EGM 2008 gravity anomaly and GOCE observation data. Acta Geodaetica et Cartographica Sinica, 2018, 47 (4): 425- 434.
Liang W , Li J C , Xu X Y , et al. A high-resolution Earth's gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008. Engineering, 2020, 6 (8): 860- 878.
Liu J Z , Liang X H , Ye Z R , et al. Combining multi-source data to construct full tensor of regional airborne gravity gradient disturbance. Chinese Journal of Geophysics, 2020, 63 (8): 3131- 3143.
Liu Y S , Lou L Z . Analysis of compensation for truncation error of EGM2008 by digital elevation model with different resolutions. Progress in Geophysics, 37 (2): 519- 529.
Nagy D , Papp G , Benedek J . The gravitational potential and its derivatives for the prism. Journal of Geodesy, 2000, 74 (7-8): 552- 560.
Pavlis N K , Holmes S A , Kenyon S C , et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 2012, 117 (B4): B04406
Tapley B D , Bettadpur S , Watkins M , et al. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 2004, 31 (9): L09607
Ustun A , Abbak R A . On global and regional spectral evaluation of global geopotential models. Journal of Geophysics and Engineering, 2010, 7 (4): 369- 379.
van Westrum D , Ahlgren K , Hirt C , et al. A Geoid Slope Validation Survey (2017) in the rugged terrain of Colorado, USA. Journal of Geodesy, 2021, 95 (1): 9
Xiao Y , Yang Y X , Pan Z P , et al. Performance and application of the Chinese satellite-to-satellite tracking gravimetry system. Chinese Science Bulletin, 2023, 68 (20): 2655- 2664.
Xuan J H , Zhang X F , Chen Q J . Spatio-temporal terrestrial water storage changes in the Hexi Corridor derived by GRACE/GRACE-FO gravity satellites over the past 20 years. Progress in Geophysics, 2024, 39 (1): 100- 110.
Yang M , Hirt C , Tenzer R , et al. Experiences with the use of mass-density maps in residual gravity forward modelling. Studia Geophysica et Geodaetica, 2018, 62 (4): 596- 623.
You W , Xiong D W , Fang W H . Strategies and analysis for the computation of GRACE atmospheric de-aliasing models. Progress in Geophysics, 2023, 38 (3): 1059- 1073.
Zhang P P , Li Z C , Bao L F , et al. The refined gravity field models for height system unification in China. Remote Sensing, 2022a, 14 (6): 1437
Zhang P P , Bao L F , Guo D M , et al. Estimation of the height datum geopotential value of Hong Kong using the combined Global Geopotential Models and GNSS/levelling data. Survey Review, 2022b, 54 (383): 106- 116.
Zhang X F , Liu C . The approach of GPS height transformation based on EGM2008 and SRTM/DTM2006.0 residual terrain model. Acta Geodaetica et Cartographica Sinica, 2012, 41 (1): 25- 32.
Zhou H , Li Y Z , Zhou Z B , et al. Study on the influence of frequency-dependent accelerometer noise in determining temporal gravity field model. Chinese Journal of Geophysics, 2024, 67 (5): 1733- 1745.
Zingerle P , Pail R , Gruber T , et al. The combined global gravity field model XGM2019e. Journal of Geodesy, 2020, 94 (7): 66
, . 剩余地形模型的适用性分析. 测绘科学, 2023, 48 (8): 51- 56.
, 永海 , 新禹 , 等. GRACE/GOCE扩展重力场模型确定我国1985高程基准重力位的精度分析. 地球物理学报, 2019, 62 (6): 2016- 2026.
志勇 , 姗姗 , 世忠 , 等. GRACE-FO卫星星敏感器/加速度计安装矩阵校准. 地球物理学进展, 2024, 39 (1): 87- 99.
, 新禹 , 建成 , 等. 联合EGM2008模型重力异常和GOCE观测数据构建超高阶地球重力场模型SGG-UGM-1. 测绘学报, 2018, 47 (4): 425- 434.
金钊 , 星辉 , 周润 , 等. 融合多源数据构建区域航空重力梯度扰动全张量. 地球物理学报, 2020, 63 (8): 3131- 3143.
雨生 , 立志 . 不同分辨率数字高程模型对EGM2008截断误差补偿效果分析. 地球物理学进展, 2022, 37 (2): 519- 529.
, 元喜 , 宗鹏 , 等. 中国卫星跟踪卫星重力测量系统性能与应用. 科学通报, 2023, 68 (20): 2655- 2664.
键豪 , 兴福 , 秋杰 . GRACE/GRACE-FO重力卫星揭示近20年河西走廊陆地水储量时空变化. 地球物理学进展, 2024, 39 (1): 100- 110.
, 大伟 , 伟浩 . GRACE大气去混频模型计算的若干策略分析. 地球物理学进展, 2023, 38 (3): 1059- 1073.
兴福 , . 综合EGM2008模型和SRTM/DTM2006. 0剩余地形模型的GPS高程转换方法. 测绘学报, 2012, 41 (1): 25- 32.
, 耀宗 , 泽兵 , 等. 星载加速度计频域噪声对时变重力场反演的影响研究. 地球物理学报, 2024, 67 (5): 1733- 1745.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(10887 KB)

Accesses

Citation

Detail

Sections
Recommended

/