Detection capability of ground-based transient electromagnetic methods for low-resistivity vein deposits beneath a cover layer

YangZhou WANG, Tao XING, JingCun YU, Yao WANG, JianHui LI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1473-1491.

PDF(15025 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(15025 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1473-1491. DOI: 10.6038/pg2025II0341

Detection capability of ground-based transient electromagnetic methods for low-resistivity vein deposits beneath a cover layer

Author information +
History +

Abstract

Vein deposits, important carriers of metal sulfides, typically exhibit low resistivity. Transient Electromagnetic (TEM) methods have been widely employed for detecting such low-resistivity deposits, with forward modeling forming the basis of field data acquisition design and subsequent data processing and interpretation. To optimize field exploration strategies and facilitate effective data interpretation, this study constructs a series of low-resistivity vein deposit models buried beneath conductive cover layers. We use a 3D vector finite element forward modeling approach to systematically investigate the effects of transmitter loop scale, cover layer conductivity and thickness, as well as deposit conductivity, thickness, and dip angle on the resolution of TEM methods. The results show that increasing the transmitter loop scale enhances the total induced Electromotive Force (EMF) field but reduces the ratio of the total field to the background field, indicating a decrease in resolution. Using the constructed model as an example, increasing the transmitter loop scale by a factor of three leads to a 7/9 reduction in resolution. An increase in the conductivity and thickness of the cover layer significantly weakens the detection capability of TEM. Similarly, a decrease in the conductivity and thickness of vein deposits results in reduced detection capability. For instance, with a 300 m transmitter loop, increasing the cover layer conductivity by a factor of 10 leads to a 94.5% reduction in resolution, while increasing the cover layer thickness by 2.5 times reduces the resolution by 96.7%. Reducing the deposit conductivity by 49/50 lowers the resolution by 98.8%, and reducing the deposit thickness by 9/10 lowers the resolution by 96.7%. Changes in the dip angle of the deposit also affect the location of the measurement point with the strongest resolution. For example, at a 25° dip angle, the measurement point above the center of the deposit exhibits the strongest resolution, whereas at a 75° dip angle, the strongest resolution shifts to the measurement point above the deeper end of the deposit. This study shows that the physical properties of the cover layer and vein deposits significantly impact the detection capability of TEM, with these effects being more pronounced when using small-scale transmitter loops. Therefore, exploration design must strike a balance among transmitter loop scale, resolution, target dimensions, and operational efficiency.

Key words

Transient Electromagnetic (TEM) methods / Vein deposits / Detection capability / Transmitter loop scale / Cover layer

Cite this article

Download Citations
YangZhou WANG , Tao XING , JingCun YU , et al . Detection capability of ground-based transient electromagnetic methods for low-resistivity vein deposits beneath a cover layer[J]. Progress in Geophysics. 2025, 40(4): 1473-1491 https://doi.org/10.6038/pg2025II0341

References

Amestoy P R, Duff I S, L'Excellent J Y, et al. 2001. MUMPS: A general purpose distributed memory sparse solver. //5th International Workshop on Applied Parallel Computing. Bergen, Norway: Springer, 121-130, doi: 10.1007/3-540-70734-4_16.
Annan A P. 1974. The equivalent source method for electromagnetic scattering analysis and its geophysical application[Ph. D. thesis]. Newfoundland and Labrador: Memorial University of Newfoundland.
Asten M W, Duncan A C. The quantitative advantages of using B-field sensors in time-domain EM measurement for mineral exploration and unexploded ordnance search. Geophysics, 2012, 77(4): WB137- WB148.
Chang J H, Xue J J, Meng Q X, et al. Research progress in three-dimensional forward modeling for the transient electromagnetic method. Journal of Geophysics and Engineering, 2024, 21(6): 1764- 1774.
Chen Z L. Physical simulation experiments on several regular shapes of electromagnetic method. Geophysical and Geochemical Exploration, 2013, 37(6): 1092- 1095.
Dyck A V, Bloore M, Vallee M A. 1980. User manual for programs PLATE and SPHERE. Research in Applied Geophysics, No. 14. Canada: Geophysics Laboratory, University of Toronto.
Everett M E, Benavides A, Pierce C J. An experimental study of the time-domain electromagnetic response of a buried conductive plate. Geophysics, 2005, 70(1): G1- G7.
Gallagher P R, Ward S H, Hohmann G W. A model study of a thin plate in free space for the EM37 transient electromagnetic system. Geophysics, 1985, 50(6): 1002- 1019.
Guo Z W, Xue G Q, Liu J X, et al. Electromagnetic methods for mineral exploration in China: A review. Ore Geology Reviews, 2020, 118: 103357
Hanneson J E. The transient EM step response of a dipping plate in a conductive half-space. Geophysics, 1992, 57(9): 1116- 1126.
Jin J M. The Finite Element Method in Electromagnetics. New York: Wiley-IEEE Press, 2014
Keating P B, Crossley D J. The inversion of time-domain airborne electromagnetic data using the plate model. Geophysics, 1990, 55(6): 705- 711.
Lamontagne Y, West G F. EM response of a rectangular thin plate. Geophysics, 1971, 36(6): 1204- 1222.
Li J H, Zhu Z Q, Zeng S H, et al. Progress of forward computation in transient electromagnetic method. Progress in Geophysics, 2012, 27(4): 1393- 1400.
Li J H, Cao X F, Ling C P, et al. Geoelectric models and their corresponding successful cases for transient electromagnetic prospecting. Progress in Geophysics, 2016, 31(1): 232- 250.
Li J H, Lu X S, Farquharson C G, et al. A finite-element time-domain forward solver for electromagnetic methods with complex-shaped loop sources. Geophysics, 2018, 83(3): E117- E132.
Li J H, Wang Y. Effects of base frequency, duty cycle, and waveform repetition on transient electromagnetic responses: Insights from models of a deep-buried conductor. Geophysics, 2024, 89(4): E165- E176.
Li K, Sun H F. Response characteristics analysis of mine water filled structure with ground-tunnel transient electromagnetic method. Journal of China University of Mining & Technology, 2018, 47(5): 1113- 1122.
Liu Z J, Liu S H, Ma Y X, et al. Numerical simulation and late response characteristics of surface-borehole transient electromagnetic field of thin plate. Geophysical and Geochemical Exploration, 2020, 44(3): 685- 690.
Lu X S, Farquharson C G, Miehé J M, et al. 3D electromagnetic modeling of graphitic faults in the Athabasca Basin using a finite-volume time-domain approach with unstructured grids. Geophysics, 2021, 86(6): B349- B367.
Malo-Lalande C, Chouteau M C, Marcotte D, et al. Time-domain electromagnetic data interpretation using moving-loop configurations for sheet-like base metal ore deposits in resistive hosts. Exploration Geophysics, 2005, 36(4): 374- 380.
Mcmillan M S, Schwarzbach C, Haber E, et al. 3D parametric hybrid inversion of time-domain airborne electromagnetic data. Geophysics, 2015, 80(6): K25- K36.
Meng Q X, Pan H P, Niu Z. Forward simulation of surface-borehole TEM in geological medium effect. Journal of China University of Mining & Technology, 2014, 43(6): 1113- 1119.
Ning Y L, Zhou Z Y, Jiang M Z, et al. Airborne anomaly characteristics and prospecting intention of the upper reaches of Xiagalai'aoyi river Pb-Zn deposit in Heilongjiang. Progress in Geophysics, 2019, 34(3): 1074- 1080.
Pirttijärvi M, Verma S K, Hjelt S E. Inversion of transient electromagnetic profile data using conductive finite plate model. Journal of Applied Geophysics, 1998, 38(3): 181- 194.
Rai S S. Transient electromagnetic response of a thin conducting plate embedded in conducting host rock. Geophysics, 1985, 50(8): 1342- 1349.
Sharma S P, Kaikkonen P. Global optimisation of time domain electromagnetic data using very fast simulated annealing. Pure and Applied Geophysics, 1999, 155(1): 149- 168.
Sun H F, Hu S S, Liu S B, et al. 3D forward modeling software development for transient electromagnetic based on FDTD method. Progress in Geophysics, 2024, 39(6): 2368- 2382.
Um E S, Harris J M, Alumbaugh D L. 3D time-domain simulation of electromagnetic diffusion phenomena: A finite-element electric-field approach. Geophysics, 2010, 75(4): F115- F126.
Walker P, Lamontagne Y. 2007. Electromagnetic modelling of the Cree lake extension, Millenium Deposit, with MultiLoop Ⅲ. //Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration. Toronto, 1077-1080.
Wang L Y, Yin C C, Liu Y H, et al. Three-dimensional forward modeling for the SBTEM method using an unstructured finite-element method. Applied Geophysics, 2021, 18(1): 101- 116.
Yang H J, Pan H P, Luo M, et al. Numerical modeling for transient anomalous secondary electromagnetic of tabular orebody in borehole. Earth Science, 2015, 40(10): 1689- 1700.
Yang H Y, Xu Z Y, Yue J H, et al. 3D inclined conductor behavior of down-hole transient electromagnetic method with overburden layer. Geophysical and Geochemical Exploration, 2016, 40(1): 190- 196.
Yang J, Jiang X T, Yang Y, et al. Three-dimensional finite volume forward modeling of semi-airborne transient electromagnetic source with long grounded conductor. Progress in Geophysics, 2022, 37(5): 2072- 2078.
Yin C C, Liu Y H, Xiong B. Status and prospect of 3D inversions in EM geophysics. Science China Earth Sciences, 2020, 63(3): 452- 455.
载林. 瞬变电磁法几种规则形体的物理模拟实验. 物探与化探, 2013, 37(6): 1092- 1095.
建慧, 自强, 思红, 等. 瞬变电磁法正演计算进展. 地球物理学进展, 2012, 27(4): 1393- 1400.
建慧, 晓峰, 成鹏, 等. 瞬变电磁法勘探的地电模型及其成功案例分析. 地球物理学进展, 2016, 31(1): 232- 250.
, 怀凤. 矿井含水构造地井瞬变电磁响应规律分析. 中国矿业大学学报, 2018, 47(5): 1113- 1122.
祖鉴, 诗华, 一行, 等. 薄板状导体地-井瞬变电磁场数值模拟及晚期响应特征. 物探与化探, 2020, 44(3): 685- 690.
庆鑫, 和平, . 大地介质影响下地-井瞬变电磁的正演模拟分析. 中国矿业大学学报, 2014, 43(6): 1113- 1119.
媛丽, 子阳, 民忠, 等. 黑龙江下嘎来奥伊河上游铅锌多金属矿航空电磁异常特征及找矿意义. 地球物理学进展, 2019, 34(3): 1074- 1080.
怀凤, 杉杉, 尚斌, 等. 复杂模型瞬变电磁三维FDTD正演软件开发. 地球物理学进展, 2024, 39(6): 2368- 2382.
怀杰, 和平, , 等. 井中板状矿体瞬态异常二次场数值模拟. 地球科学, 2015, 40(10): 1689- 1700.
海燕, 正玉, 建华, 等. 覆盖层下三维板状体地-井瞬变电磁响应. 物探与化探, 2016, 40(1): 190- 196.
, 晓腾, , 等. 接地长导线源半航空瞬变电磁三维有限体积正演. 地球物理学进展, 2022, 37(5): 2072- 2078.
长春, 云鹤, . 地球物理三维电磁反演方法研究动态. 中国科学: 地球科学, 2020, 50(3): 432- 435.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(15025 KB)

Accesses

Citation

Detail

Sections
Recommended

/