Detecting geological structures of cave ceilings within grotto temples using GPR

YongLiang FAN, XiangYu YAN, GongZheng DAI, ShiLi GUO, MingYu YU, YuHang ZHU, YaoHui SHUI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1679-1687.

PDF(5711 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5711 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1679-1687. DOI: 10.6038/pg2025II0342

Detecting geological structures of cave ceilings within grotto temples using GPR

Author information +
History +

Abstract

Grotto temples are invaluable cultural heritage and crucial physical resources for studying the history of Buddhism and ancient sculptural art in China. However, they are susceptible to natural environmental factors like weathering and erosion, which can lead to the development of joints, fractures, and karst cavities in the rock of the grotto ceilings. These geological issues can cause water leakage and structural instability, threatening the long-term preservation of the caves and their wall sculptures. To tackle these challenges, we employed a combined approach using ground-coupled shielded antennas with center frequencies of 400 MHz and 270 MHz. This method utilizes a grid layout for comprehensive non-destructive detection of concealed geological structures in the ceiling of a specific grotto temple. The collected Ground Penetrating Radar (GPR) data from the grid lines were then analyzed using three-dimensional (3D) visualization techniques. The results reveal that the integrated use of 400 MHz and 270 MHz antennas not only allows for the detailed delineation of geological anomalies, such as lithological interfaces, fractures, and karst cavities within the cave ceilings, but also clearly outlines the topographic relief of the rock mass. Furthermore, the 3D visualization of the GPR data enables viewing and analyzing the 3D radar data volume from various angles and dimensions, providing an intuitive representation of the rock structure, anomalies, and other relevant information. This significantly enhances the efficiency and accuracy of data interpretation. The application of GPR non-destructive detection technology is highly beneficial for analyzing the geological causes and pathways of water leakage in grotto temples. It provides an important basis for water hazard management, cultural relic preservation, and reinforcement efforts.

Key words

Ground Penetrating Radar (GPR) / Grotto temple / Cave ceiling / Geological structure / 3D visualization

Cite this article

Download Citations
YongLiang FAN , XiangYu YAN , GongZheng DAI , et al . Detecting geological structures of cave ceilings within grotto temples using GPR[J]. Progress in Geophysics. 2025, 40(4): 1679-1687 https://doi.org/10.6038/pg2025II0342

References

Fang Y , Zhai G L , Qiao L . The application of ground penetrating radar technology to the protection engineering of Fengxian temple. Geophysical and Geochemical Exploration, 2014, 38 (4): 815- 819.
Feng X , An Y F , Zhang Y S , et al. High-precision detection technology for fracture seepage networks in sandstone rock carvings. Research on Conservation of the Cave Temples and Earthen Sites, 2023, 2 (4): 4- 15.
Guo S L , Duan J X , Zhang J F , et al. Application of GPR in urban road hidden diseases detection. Progress in Geophysics, 2019, 34 (4): 1609- 1613.
He D P , Wu F S , Xu R H , et al. The application of ground penetrating radar in plant root system detecting around Mogao grottoes. Journal of Arid Land Resources and Environment, 2015, 29 (2): 86- 91.
Li Y H. 2012. The application and study of geophysical methods on testing superficial fractures at Yungang grottoes[Ph. D. thesis](in Chinese). Beijing: China University of Geosciences (Beijing).
Liu J Y , Zollinger D G , Lytton R L . Detection of delamination in concrete pavements using ground-coupled Ground Penetrating radar technique. Transp. Res. Rec., 2008, 2087 (1): 68- 77.
Liu L B , Qian R Y . Ground penetrating radar: a critical tool in near-surface geophysics. Chinese Journal of Geophysics, 2015, 58 (8): 2606- 2617.
Mei B , Deng S K , Hu C B . Application of GPR technology in the protection and maintenance of Yungang grottoes. Chinese Journal of Engineering Geophysics, 2006, 3 (6): 448- 451.
Negri S , Leucci G . Geophysical investigation of the temple of Apollo (Hierapolis, Turkey). J. Archaeol. Sci., 2006, 33 (11): 1505- 1513.
Yalçiner C Ç , Bano M , Kadioglu M , et al. New temple discovery at the archaeological site of Nysa (western turkey) using GPR method. J. Archaeol. Sci., 2009, 36 (8): 1680- 1689.
Yang T. 2009. GPR and IRT aided conservation of delaminated wall paintings in Xizang lamaseries and Dunhuang grottoes[Ph. D. thesis](in Chinese). Lanzhou: Lanzhou University.
Zhao W K. 2013. The study of ground penetrating radar attribute technology for archaeological prospection[Ph. D. thesis](in Chinese). Hangzhou: Zhejiang University.
, 国林 , . 探地雷达探测技术在奉先寺保护工程中的应用. 物探与化探, 2014, 38 (4): 815- 819.
, 娅菲 , 益胜 , 等. 石窟岩体裂隙渗流网络地球物理地—井—崖差分高精度探测技术研究. 石窟与土遗址保护研究, 2023, 2 (4): 4- 15.
士礼 , 建先 , 建锋 , 等. 探地雷达在城市道路塌陷隐患探测中的应用. 地球物理学进展, 2019, 34 (4): 1609- 1613.
东鹏 , 发思 , 瑞红 , 等. 探地雷达在莫高窟窟区树木根系探测方面的应用. 干旱区资源与环境, 2015, 29 (2): 86- 91.
李耀华. 2012. 地球物理方法在云冈石窟表层裂隙检测中的应用研究[博士论文]. 北京: 中国地质大学(北京).
澜波 , 荣毅 . 探地雷达: 浅表地球物理科学技术中的重要工具. 地球物理学报, 2015, 58 (8): 2606- 2617.
, 世坤 , 朝彬 . 探地雷达技术在云冈石窟维护中的应用. 工程地球物理学报, 2006, 3 (6): 448- 451.
杨涛. 2009. 探地雷达和红外热像仪在西藏寺院和敦煌石窟空鼓壁画保护中的应用[博士论文]. 兰州: 兰州大学.
赵文轲. 2013. 探地雷达属性技术及其在考古调查中的应用研究[博士论文]. 杭州: 浙江大学.

感谢审稿专家的宝贵修改意见.

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5711 KB)

Accesses

Citation

Detail

Sections
Recommended

/