Three-dimensional stochastic medium modelling for ground-penetrating radar based on soil fractals

ShiLong GUO, Qi LU, SiXin LIU, WenJing LIANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2201-2210.

PDF(5701 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5701 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2201-2210. DOI: 10.6038/pg2025II0344

Three-dimensional stochastic medium modelling for ground-penetrating radar based on soil fractals

Author information +
History +

Abstract

Ground Penetrating Radar (GPR) has been widely used to detect soil structure, soil moisture content, and soil texture. In this article, we establish models of 3D stochastic media in GPR based on soil fractal characteristics and perform GPR forward modeling. We use a 3D Fractal Brownian Motion (FBM) spectral density function to simulate stochastic media and discuss the effects of Hurst exponent and scale coefficients on the modeling results. The Hurst exponent is an important indicator in FBM, which reflects the smoothness of the medium as well as the degree of disturbance. Hurst's exponent is also used to describe the self-similarity of the soil, i.e. the degree of fractal. Soil Water Content (SWC) is a key factor affecting the heterogeneity of soil media, and the distribution of soil dielectric properties also depends on SWC. Therefore, we use SWC data to obtain the Hurst exponent through Rescaled range (R/S) analysis. Finally, a 3D stochastic medium model is established based on actual SWC data, and GPR forward simulation is performed on the established model by the Finite-Difference Time-Domain (FDTD) method. The simulation results show that the proposed stochastic medium modeling based on soil fractal characteristics can provide an effective modeling tool for GPR soil detection.

Key words

Ground Penetrating Radar (GPR) / Soil fractals / Three-dimensional stochastic medium / Hurst exponent / Rescaled range (R/S) analysis

Cite this article

Download Citations
ShiLong GUO , Qi LU , SiXin LIU , et al. Three-dimensional stochastic medium modelling for ground-penetrating radar based on soil fractals[J]. Progress in Geophysics. 2025, 40(5): 2201-2210 https://doi.org/10.6038/pg2025II0344

References

Chen K Y . 3D random modeling scheme and wavefield simulation analysis. Progress in Exploration Geophysics (in Chinese), 2009, 32 (5): 315- 320.
Ercoli M , Di Matteo L , Pauselli C , et al. Integrated GPR and laboratory water content measures of sandy soils: from laboratory to field scale. Construction and Building Materials, 2018, 159: 734- 744.
Gou C Y , Zheng Y B , Wang J . The fractal structure and R/S analysis of a time sequence of strong earthquake of Eastern China. Journal of Tianjin Normal University (Natural Science Edition) (in Chinese), 2009, 29 (1): 25- 28.
Guan S S , Yin C C , Ji Y L , et al. FTEM modeling of 3D random fracture based on FDTD. Chinese Journal of Geophysics (in Chinese), 2018, 61 (11): 4660- 4676.
Guo S L , Yue G H , Cai W C , et al. Study on transmission characteristics of GPR in multiphase discrete random medium. Progress in Geophysics (in Chinese), 2021, 36 (1): 351- 360.
Huang G H , Zhan W H . Fractal property of soil particle size distribution and its application. Acta Pedologica Sinica (in Chinese), 2002, 39 (4): 490- 497.
Huggenberger P , Meier E , Pugin A . Ground-probing radar as a tool for heterogeneity estimation in gravel deposits: advances in data-processing and facies analysis. Journal of Applied Geophysics, 1994, 31 (1-4): 171- 184.
Hurst H E . Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 1951, 116 (1): 770- 799.
Ikelle L T , Yung S K , Daube F . 2-D random media with ellipsoidal autocorrelation functions. Geophysics, 1993, 58 (9): 1359- 1372.
Korn M . Seismic waves in random media. Journal of Applied Geophysics, 1993, 29 (3-4): 247- 269.
Li H L , Lu Q . Progress in application of ground penetrating radar in LNAPL contaminated soil detection of LNAPL. Progress in Geophysics (in Chinese), 2020, 35 (3): 1141- 1148.
Li J. 2014. Ground penetrating radar detection and parameter inversion in stochastic effective medium [Ph. D. thesis](in Chinese). Changchun: Jilin University.
Liu C , Liu Q , Zhang Q , et al. Spatial variation of black soil thickness on slope measured by using ground penetrating radar in Northeast China. Acta Pedologica Sinica (in Chinese), 2024, 61 (4): 952- 963.
Mandelbrot B . How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 1967, 156 (3775): 636- 638.
Mandelbrot B B , Wallis J R . Noah, Joseph, and operational hydrology. Water Resources Research, 1968, 4 (5): 909- 918.
Mandelbrot B B , Wallis J R . Some long-run properties of geophysical records. Water Resources Research, 1969, 5 (2): 321- 340.
Mandelbrot B B. 1972. Statistical methodology for nonperiodic cycles: from the covariance to R/S analysis. //NBER ed. Annals of Economic and Social Measurement. Chicago: NBER, 259-290.
Mandelbrot B B . The Fractal Geometry of Nature. New York: WH Freeman, 1982
Mao S R , Shi S P , Yu Z J , et al. A seismic data denoising method based on complete ensemble empirical mode decomposition with adaptive noise and Hurst exponent. Acta Seismologica Sinica (in Chinese), 2023, 45 (2): 258- 270.
Marple Jr S L . Digital Spectral Analysis. 2nd ed New York: Courier Dover Publications, 2019
Meadows D G , Young M H , McDonald E V . Estimating the fine soil fraction of desert pavements using ground penetrating radar. Vadose Zone Journal, 2006, 5 (2): 720- 730.
Tian Z , Zhang S P , Wang X , et al. Fractal characteristics of soil particle under different land use patterns in Longji terrace. Research of Agricultural Modernization (in Chinese), 2023, 44 (4): 724- 735.
Wu Z Y , Peng S P , Cui F , et al. Using ground penetrating radar combined with borehole to detect soil profile and water content in coal mining subsidence area. Transactions of the Chinese Society of Agricultural Engineering (in Chinese), 2019, 35 (14): 243- 251.
Xi X , Yao Y . Simulations of random medium model and intermixed random medium. Earth Science—Journal of China University of Geosciences (in Chinese), 2002, 27 (1): 67- 71.
Xi X , Yao Y . Non-stationary random medium model. Oil Geophysical Prospecting (in Chinese), 2005, 40 (1): 71- 75.
Xue J , Zeng Z F , Tian G , et al. The application of GPR to detecting the Saline-Alkali layer in west Jilin. Geophysical and Geochemical Exploration (in Chinese), 2005, 29 (5): 421- 424.
Yang J L , Li D C , Zhang G L , et al. Comparison of mass and volume fractal dimensions of soil particle size distributions. Acta Pedologica Sinica (in Chinese), 2008, 45 (3): 413- 419.
Yao J Z , Liu T X , Tong X , et al. Soil particle fractal dimension in the Dune-meadow ecotone of the Horqin sandy land. Journal of Desert Research (in Chinese), 2016, 36 (2): 433- 440.
Yao Y , Xi X . Modeling in random medium and its seismic wavefield analysis. Geophysical Prospecting for Petroleum (in Chinese), 2002, 41 (1): 31- 36.
Yin X X , Liu Y . Random medium 2-D modeling and its wavefield analysis. Oil Geophysical Prospecting (in Chinese), 2011, 46 (6): 862- 872.
Yong F , Liu Z L , Ou Y , et al. Application of statistical analysis based on random medium model in deep seismic reflection data. Progress in Geophysics (in Chinese), 2021, 36 (3): 993- 1007.
Zeng Z F , Liu S X , Feng X , et al. Principles and Applications of Ground Penetrating Radar (in Chinese). Beijing: Electronic Industry Press, 2010,
Zhang K W , Nie Q K , Wu Y P , et al. Application research of plant root detection based on GPR technology. Chinese Journal of Engineering Geophysics (in Chinese), 2018, 15 (1): 86- 91.
Zhao S Q , Chi D Q , Jia F C , et al. Study on fractal characteristics of soil particles of saline soil in different regions. Jiangsu Agricultural Sciences (in Chinese), 2021, 49 (6): 203- 207.
可洋 . 三维随机建模方法及其波场模拟分析. 勘探地球物理进展, 2009, 32 (5): 315- 320.
长义 , 永冰 , . 我国东部强震时间序列的分形结构及R/S分析. 天津师范大学学报(自然科学版), 2009, 29 (1): 25- 28.
珊珊 , 长春 , 艳鞠 , 等. 三维随机断裂带的航空时域电磁响应数值模拟. 地球物理学报, 2018, 61 (11): 4660- 4676.
士礼 , 光华 , 文才 , 等. 多相离散随机介质探地雷达波传输特性研究. 地球物理学进展, 2021, 36 (1): 351- 360.
冠华 , 卫华 . 土壤颗粒的分形特征及其应用. 土壤学报, 2002, 39 (4): 490- 497.
洪丽 , 鹿 . 探地雷达在LNAPL污染土壤探测中的应用进展研究. 地球物理学进展, 2020, 35 (3): 1141- 1148.
李静. 2014. 随机等效介质探地雷达探测技术和参数反演[博士论文]. 长春: 吉林大学.
, , , 等. 利用探地雷达测定东北黑土层厚度在坡面的空间变化. 土壤学报, 2024, 61 (4): 952- 963.
世榕 , 水平 , 壮基 , 等. 基于自适应噪声完全集合经验模态分解算法和Hurst指数的地震数据去噪方法. 地震学报, 2023, 45 (2): 258- 270.
, 帅普 , , 等. 龙脊梯田不同土地利用方式下土壤粒径分形特征. 农业现代化研究, 2023, 44 (4): 724- 735.
志远 , 苏萍 , , 等. 探地雷达结合钻孔探测采煤塌陷区土壤剖面层次及含水率. 农业工程学报, 2019, 35 (14): 243- 251.
, . 随机介质模型的模拟与混合型随机介质. 地球科学——中国地质大学学报, 2002, 27 (1): 67- 71.
, . 非平稳随机介质模型. 石油地球物理勘探, 2005, 40 (1): 71- 75.
, 昭发 , , 等. 探地雷达在吉林西部地区探测土壤碱化层. 物探与化探, 2005, 29 (5): 421- 424.
金玲 , 德成 , 甘霖 , 等. 土壤颗粒粒径分布质量分形维数和体积分形维数的对比. 土壤学报, 2008, 45 (3): 413- 419.
姣转 , 廷玺 , , 等. 科尔沁沙地沙丘-草甸相间地土壤颗粒的分形特征. 中国沙漠, 2016, 36 (2): 433- 440.
, . 随机介质模型正演模拟及其地震波场分析. 石油物探, 2002, 41 (1): 31- 36.
学鑫 , . 二维随机介质模型正演模拟及其波场分析. 石油地球物理勘探, 2011, 46 (6): 862- 872.
, 子龙 , , 等. 基于随机介质模型的统计分析在深反射地震中的应用. 地球物理学进展, 2021, 36 (3): 993- 1007.
昭发 , 四新 , , 等. 探地雷达原理与应用. 北京: 电子工业出版社, 2010
开伟 , 庆科 , 园平 , 等. 基于探地雷达技术的植物根系探测应用研究. 工程地球物理学报, 2018, 15 (1): 86- 91.
守强 , 大群 , 付诚 , 等. 不同地区盐渍土土壤颗粒的分形特征. 江苏农业科学, 2021, 49 (6): 203- 207.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5701 KB)

Accesses

Citation

Detail

Sections
Recommended

/