One-dimensional audio magnetotelluric finite element modeling in conductive anisotropic and magnetic media

HaoDong WANG, XingYou CHEN, GuangJie WANG, ZongYi ZHOU, ShuaiYing QIAO, Hua PENG, TiaoJie XIAO

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1588-1600.

PDF(6465 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6465 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1588-1600. DOI: 10.6038/pg2025II0354

One-dimensional audio magnetotelluric finite element modeling in conductive anisotropic and magnetic media

Author information +
History +

Abstract

Audio Magnetotelluric Method (AMT) is an important geophysical exploration technique widely applied in geological surveys and mineral exploration. Conductivity and magnetic permeability are two key physical parameters that influence AMT responses, and phenomena such as conductivity anisotropy and non-zero magnetic susceptibility in the Earth like magnetite are commonly observed in real geophysical scenarios. However, current mature AMT forward and inverse modeling techniques typically consider only the conductivity, with insufficient understanding of AMT responses under conditions of conductivity anisotropy and non-zero susceptibility. Therefore, we considering both arbitrary conductive anisotropy and magnetic permeability. We derived and implemented a finite element forward modeling algorithm for one-dimensional layered media in detail, and further analyzed the responses of typical models. The results indicate that when media with strong magnetic susceptibility, such as ferromagnetic medium, it is necessary to take the influence of magnetic susceptibility into consideration. Especially, low-resistive bodies may exhibit high apparent resistivity due to the effects of high magnetic susceptibility. This study provides a framework for investigating the impacts of conductive anisotropy and magnetic permeability and serves as a reference for subsequent numerical simulations of two-dimensional and three-dimensional complex scenarios.

Key words

Audio magnotelluric method / Finite element method / Forward modeling / Anisotropy / Magnetic susceptibility / Mangetic permeability

Cite this article

Download Citations
HaoDong WANG , XingYou CHEN , GuangJie WANG , et al . One-dimensional audio magnetotelluric finite element modeling in conductive anisotropic and magnetic media[J]. Progress in Geophysics. 2025, 40(4): 1588-1600 https://doi.org/10.6038/pg2025II0354

References

Bai N B , Zhou J J , Hu X Y , et al. 3D edge-based and nodal finite element modeling of magnetotelluric in general anisotropic media. Computers & Geosciences, 2022, 158: 104975
Chen L , Xiao T J , Liu J , et al. One-dimensional magnetotelluric modeling in magnetic and resistive axial anisotropic media. Progress in Geophysics, 2022, 37 (6): 2373- 2380.
Chen R Z , An Z G , Yang L Y . Fast OCCAM inversion for two-dimensional magnetotelluric based on MATLAB language. Progress in Geophysics, 2018, 33 (4): 1461- 1468.
Chen X B , Ye T , Cai J T , et al. Refined techniques for data processing and two-dimensional inversion in magnetotelluric (Ⅶ): Electrical structure and seismogenic environment of Yingjiang-Longling seismic area. Chinese Journal of Geophysics, 2019, 62 (4): 1377- 1393.
Christensen N I . The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophysical Journal International, 1984, 76 (1): 89- 111.
Evans R L , Hirth G , Baba K , et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature, 2005, 437 (7056): 249- 252.
Everett M E. 2010. Advances in near-surface applied electromagnetic geophysical techniques with selected applications. //20th Electromagnetic Induction Workshop.
Huo G P , Hu X Y , Liu M . Review of the forward modeling of magnetotelluric in the anisotropy medium research. Progress in Geophysics, 2011, 26 (6): 1976- 1982.
Klein K A , Santamarina J C . Electrical conductivity in soils: Underlying phenomena. Journal of Environmental and Engineering Geophysics, 2003, 8 (4): 263- 273.
Kong W X , Tan H D , Lin C H , et al. Three-dimensional inversion of magnetotelluric data for a resistivity model with arbitrary anisotropy. Journal of Geophysical Research: Solid Earth, 2021, 126 (8): e2020JB020562
Liu Y , Xu Z H , Li Y G . Adaptive finite element modelling of three-dimensional magnetotelluric fields in general anisotropic media. Journal of Applied Geophysics, 2018, 151: 113- 124.
Liu Y D , Tan H D , Song W J . The influence of the MT response for magneticsability parameters. Progress in Geophysics, 2014, 29 (5): 2040- 2046.
Pek J , Santos F A M . Magnetotelluric impedances and parametric sensitivities for 1 -D anisotropic layered media. Computers & Geosciences, 2002, 28 (8): 939- 950.
Qian W Z. 2023. Study on three-dimensional electrical structure of Dongmencopper polymetallic deposit in Jiangxi Province[Master's thesis] (in Chinese). Fuzhou: East China University of Technology, doi: 10.27145/d.cnki.ghddc.2023.000038.
Qu W Z , An Z G . Numerical simulation of time-lapse audio magnetotelluric monitoring. Progress in Geophysics, 2020, 35 (4): 1595- 1604.
Sasaki Y , Kim J H , Cho S J . Multidimensional inversion of loop-loop frequency-domain EM data for resistivity and magnetic susceptibility. Geophysics, 2010, 75 (6): F213- F223.
Thomas L . Electromagnetic sounding with susceptibility among the model parameters. Geophysics, 1977, 42 (1): 92- 96.
Wang N , Zhao S S , Hui J , et al. Three-dimensional audio magnetotelluric sounding of coal-bed methane reservoirs in southern Qinshui basin. Progress in Geophysics, 2016, 31 (6): 2664- 2676.
Wang X B , Chen J C , Guo Q S , et al. Research of the CSAMT exploration mode and experiment for the coalbed methane enrichment region in the north Qinshui basin. Chinese Journal of Geophysics, 2013, 56 (12): 4310- 4323.
Xiao T J , Liu Y , Wang Y , et al. Three-dimensional magnetotelluric modeling in anisotropic media using edge-based finite element method. Journal of Applied Geophysics, 2018, 149: 1- 9.
Xiao T J , Huang X Y , Wang Y . Three-dimensional magnetotelluric modelling in anisotropic media using the A-phi method. Exploration Geophysics, 2019, 50 (1): 31- 41.
Xiao T J , Wang Y , Huang X Y , et al. Magnetotelluric responses of three-dimensional conductive and magnetic anisotropic anomalies. Geophysical Prospecting, 2020, 68 (3): 1016- 1040.
Xu S Z . The Finite Element Method in Geophysics. Beijing: Science Press, 1994
Yadav G S , Lal T . A Fortran 77 program for computing magnetotelluric response over a stratified earth with changing magnetic permeability. Computers & Geosciences, 1997, 23 (10): 1035- 1038.
Yu N , Chen Z , Wu X L , et al. Unstructured grid finite element modeling of the three-dimensional magnetotelluric responses in a model with arbitrary conductivity and magnetic susceptibility anisotropies. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 2002013
Zhang J W. 2021. Quasi two-dimensional joint inversion of CSAMT and microtremor survey data[Master's thesis] (in Chinese). Beijing: China University of Geosciences (Beijing), doi: 10.27493/d.cnki.gzdzy.2021.000776.
Zhang Z J . A review of the seismic anisotropy and its applications. Progress in Geophysics, 2002, 17 (2): 281- 293.
Zhang Z Y , Oldenburg D W . Simultaneous reconstruction of 1 -D susceptibility and conductivity from electromagnetic data. Geophysics, 1999, 64 (1): 33- 47.
Zhang Z Y , Xie S P , Li M , et al. Two-dimensional magnetotelluric inversion considering resistivity and magnetic permittivity. Journal of East China University of Technology (Natural Science), 2018, 41 (4): 405- 412.
Zhou J J , Bai N B , Han B , et al. Gauss-newton with preconditioned conjugate gradient magnetotelluric inversion for 3-D axial anisotropic conductivities. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4503514
Zhu D P , Wang T . The influence of magnetic susceptibility anomalies on magnetotelluric data. Science Technology and Engineering, 2020, 20 (26): 10573- 10579.
, 调杰 , , 等. 大地电磁一维磁化率、电阻率主轴各向异性正演. 地球物理学进展, 2022, 37 (6): 2373- 2380.
润滋 , 志国 , 良勇 . 基于MATLAB语言的二维大地电磁OCCAM快速反演. 地球物理学进展, 2018, 33 (4): 1461- 1468.
小斌 , , 军涛 , 等. 大地电磁资料精细处理和二维反演解释技术研究(七)——云南盈江-龙陵地震区深部电性结构及孕震环境. 地球物理学报, 2019, 62 (4): 1377- 1393.
光谱 , 祥云 , . 各向异性介质中大地电磁正演研究综述. 地球物理学进展, 2011, 26 (6): 1976- 1982.
应冬 , 捍东 , 文杰 . 磁化率参数对大地电磁响应的影响研究. 地球物理学进展, 2014, 29 (5): 2040- 2046.
钱威州. 2023. 江西东门铜多金属矿床三维电性结构[硕士论文]. 抚州: 东华理工大学, doi: 10.27145/d.cnki.ghddc.2023.000038.
文璋 , 志国 . 时移音频大地电磁监测数值模拟研究. 地球物理学进展, 2020, 35 (4): 1595- 1604.
绪本 , 进超 , 全仕 , 等. 沁水盆地北部煤层气富集区CSAMT勘探试验研究. 地球物理学报, 2013, 56 (12): 4310- 4323.
, 姗姗 , , 等. 沁水盆地南部煤层气藏三维音频大地电磁探测. 地球物理学进展, 2016, 31 (6): 2664- 2676.
世浙 . 地球物理中的有限单元法. 北京: 科学出版社, 1994
张继伟. 2021. 可控源音频大地电磁法与微动探测资料拟二维联合反演研究[硕士论文]. 北京: 中国地质大学(北京), doi: 10.27493/d.cnki.gzdzy.2021.000776.
中杰 . 地震各向异性研究进展. 地球物理学进展, 2002, 17 (2): 281- 293.
志勇 , 尚平 , , 等. 二维MT电阻率与磁导率同时反演研究. 东华理工大学学报(自然科学版), 2018, 41 (4): 405- 412.
德朋 , . 磁化率异常体对大地电磁数据影响的规律研究. 科学技术与工程, 2020, 20 (26): 10573- 10579.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(6465 KB)

Accesses

Citation

Detail

Sections
Recommended

/