Combination methods and precision analysis of multi-source global geopotential models

HaoYu LAO, XingFu ZHANG, WeiCheng SUN, JianHao XUAN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 1905-1918.

PDF(7499 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7499 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 1905-1918. DOI: 10.6038/pg2025II0355

Combination methods and precision analysis of multi-source global geopotential models

Author information +
History +

Abstract

Owing to variations in data sources, inversion methods, and data processing strategies in global geopotential models (GGMs) derived by different institutions, there exists divergence in precision across different regions. Consequently, integrating information from various GGMs holds significant practical value for deriving a more robust GGM with consistent precision. This study combines GGMs such as XGM2019e_2159 and EIGEN- 6C4 through arithmetic mean, weighted mean aggregation, and variance component estimation (VCE) techniques, with respecting to a reference model. Moreover, the evaluation encompasses GNSS leveling assessments alongside DTU17 marine gravitational anomalies and regional geoid modeling analyses. The results of the comparative analysis demonstrate that: (1) Whether to rescale with respect to the reference model has a relatively minor impact, with a maximum impact of 1.4 mm on height anomalies while affecting gravimetric anomalies by 0.05 mGal; (2) VCE (Scheme a) and arithmetic mean methods yield comparatively stable GGMs showcasing strong performance across all regions according to external validation from multiple sources.

Key words

Global geopotential models / Geodetic datum constants unification / Multi-source global geopotential models combination / Precision analysis

Cite this article

Download Citations
HaoYu LAO , XingFu ZHANG , WeiCheng SUN , et al. Combination methods and precision analysis of multi-source global geopotential models[J]. Progress in Geophysics. 2025, 40(5): 1905-1918 https://doi.org/10.6038/pg2025II0355

References

Bao L F, Xi M H, Zhai Z H, et al. Developing self-reliant seafloor geodesy. Bulletin of National Natural Science Foundation of China, 2024, 38(1): 182- 192.
Barthelmes F. 2008. Low pass filtering of gravity field models by gently cutting the spherical harmonic coefficients of higher degrees. https://icgem.gfz-potsdam.de/docs/gentlecut_engl.pdf.
Bruinsma S L, Förste C, Abrikosov O, et al. ESA's satellite-only gravity field model via the direct approach based on all GOCE data. Geophysical Research Letters, 2014, 41(21): 7508- 7514.
Chen J H, Zhang X F, Chen Q J, et al. Unconstrained gravity field model Tongji-GOGR2019S derived from GOCE and GRACE data. Chinese Journal of Geophysics, 2020a, 63(9): 3251- 3262.
Chen J H, Zhang X F, Chen Q J, et al. EGMTools: software for gravity field model estimation and gravity quantities calculation. Journal of Geodesy and Geodynamics, 2020b, 40(11): 1139- 1144.
Chen J H, Chen Q J, Shen Y Z, et al. Contribution analysis of GOCE SGG observations at different orbital altitudes to Tongji-GMMG2021S gravity field model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 14284- 14294.
Flechtner F, Reigber C, Rummel R, et al. Satellite gravimetry: a review of its realization. Surveys in Geophysics, 2021, 42(5): 1029- 1074.
Förste C, Bruinsma S L, Abrikosov O, et al. 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, https://doi.org/10.5880/icgem.2015.1.
Hofmann-Wellenhof B, Moritz H. Physical Geodesy. Vienna: Springer, 2006
Jean Y, Meyer U, Jäggi A. Combination of GRACE monthly gravity field solutions from different processing strategies. Journal of Geodesy, 2018, 92(11): 1313- 1328.
Jiang T, Wang Y M. On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation. Journal of Geodesy, 2016, 90(12): 1405- 1418.
Kern M, Schwarz K K P P, Sneeuw N. A study on the combination of satellite, airborne, and terrestrial gravity data. Journal of Geodesy, 2003, 77(3): 217- 225.
Knudsen P, Bingham R, Andersen O, et al. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. Journal of Geodesy, 2011, 85(11): 861- 879.
Li J C, Ning J S, Chao D B, et al. The applications and progress of satellite altimetry in geodesy. Science of Surveying and Mapping, 2006, 31(6): 19- 23.
Li J C. The recent Chinese terrestrial digital height datum model: gravimetric quasi-geoid CNGG2011. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 651- 660. 651-660, 669
Liang W, Li J C, Xu X Y, et al. A high-resolution Earth's gravity field model SGG-UGM-2 from GOCE, GRACE, satellite altimetry, and EGM2008. Engineering, 2020, 6(8): 860- 878.
Nie Y F, Shen Y Z, Pail R, et al. Efficient variance component estimation for large-scale least-squares problems in satellite geodesy. Journal of Geodesy, 2022, 96(2): 13
Pail R, Goiginger H, Schuh W D, et al. Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophysical Research Letters, 2010, 37(20): 2010G
Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 2012, 117(B4): 2011J
Sun H P, Li Q Q, Bao L F, et al. Progress and development trend of global refined seafloor topography modeling. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1555- 1567.
Tapley B, Ries J, Bettadpur S, et al. GGM02-an improved Earth gravity field model from GRACE. Journal of Geodesy, 2005, 79(8): 467- 478.
Van Der Meijde M, Pail R, Bingham R, et al. GOCE data, models, and applications: A review. International Journal of Applied Earth Observation and Geoinformation, 2015, 35: 4- 15.
Xu H Z, Lu Y, Zhong M, et al. Satellite gravity and its application to monitoring geophysical environmental change. Scientia Sinica Terrae, 2012, 42(6): 843- 853.
Yang Y X, Ming F. Current status and future development of spatiotemporal datum construction in China. Scientia Sinica Terrae, 2023, 66(9): 2162- 2165.
Zhang X F, Liu C, Wang G H, et al. The methods and accuracy analysis of GPS height transformation based on EGM2008 earth gravity field model. Progress in Geophysics, 2012, 27(1): 38- 44.
Zhang X F, Li B F, Wei D H, et al. The accuracy analysis of multiple earth gravity field models and normal height determination of GPS points based on combination method. Acta Geodaetica et Cartographica Sinica, 2013, 42(1): 6- 12.
Zhao Y Q, Li J C, Xu X Y, et al. Determination of static gravity field model by using satellite data of GOCE and GRACE. Chinese Journal of Geophysics, 2023, 66(6): 2322- 2336.
Zhou H, Luo Z C, Zhou Z B, et al. 2016. A new time series of GRACE monthly gravity field models: HUST-Grace2016. GFZ Data Services. http://doi.org/10.5880/ICGEM.2016.0.
Zingerle P, Pail R, Gruber T, et al. The combined global gravity field model XGM2019e. Journal of Geodesy, 2020, 94(7): 66
李峰, 梦寒, 振和, 等. 走向深海, 发展自立自强的海底大地测量基准. 中国科学基金, 2024, 38(1): 182- 192.
鑑华, 兴福, 秋杰, 等. 融合GOCE和GRACE卫星数据的无约束重力场模型Tongji-GOGR2019S. 地球物理学报, 2020a, 63(9): 3251- 3262.
鑑华, 兴福, 秋杰, 等. EGMTools: 重力场模型评估及重力量计算软件. 大地测量与地球动力学, 2020b, 40(11): 1139- 1144.
建成, 津生, 定波, 等. 卫星测高在大地测量学中的应用及进展. 测绘科学, 2006, 31(6): 19- 23.
建成. 最新中国陆地数字高程基准模型: 重力似大地水准面CNGG2011. 测绘学报, 2012, 41(5): 651- 660. 651-660, 669
和平, 倩倩, 李峰, 等. 全球海底地形精细建模进展与发展趋势. 武汉大学学报(信息科学版), 2022, 47(10): 1555- 1567.
厚泽, , , 等. 卫星重力测量及其在地球物理环境变化监测中的应用. 中国科学: 地球科学, 2012, 42(6): 843- 853.
元喜, . 中国时空基准建设现状与未来发展. 中国科学: 地球科学, 2023, 53(9): 2192- 2195.
兴福, , 国辉, 等. 基于EGM2008重力场模型的GPS高程转换方法及精度分析. 地球物理学进展, 2012, 27(1): 38- 44.
兴福, 博峰, 德宏, 等. 多类重力场模型的精度分析及联合确定GPS点正常高的方法. 测绘学报, 2013, 42(1): 6- 12.
永奇, 建成, 新禹, 等. 利用GOCE和GRACE卫星观测数据确定静态重力场模型. 地球物理学报, 2023, 66(6): 2322- 2336.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(7499 KB)

Accesses

Citation

Detail

Sections
Recommended

/