Logging evaluation of oil differentiation in Silurian of the Kepingtage Formation reservoirs of the eastern Tarim Basin

Song WANG, GuiWen WANG, LianBo ZENG, Jin LAI, Zhao CHENG, Hong ZHAO, RuoKun HUANG, Lin CHENG, ZhiShi WANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1527-1539.

PDF(15044 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(15044 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1527-1539. DOI: 10.6038/pg2025II0384

Logging evaluation of oil differentiation in Silurian of the Kepingtage Formation reservoirs of the eastern Tarim Basin

Author information +
History +

Abstract

In the eastern Tarim Basin, the Silurian Kepingtage Formation represents a crucial marine hydrocarbon-bearing system, originating within a tidal flat depositional environment. This formation has undergone multiple structural adjustments, leading to pronounced heterogeneity in the macroscopic distribution of oil and water layers, posing challenges for the exploration and development of Silurian oil reservoirs. This study leverages core samples, thin sections, core analysis, oil testing, sampling, and both conventional and Nuclear Magnetic Resonance (NMR) logging data to delineate the response characteristics of oil and water layers in conventional logging. The application of NMR logging further elucidates the intricate relationship between reservoir pore structures and hydrocarbon saturation. Through detailed analysis of well profiles across diverse locations, the study dissects the vertical and horizontal distribution patterns of oil and water layers within the Silurian Kepingtage Formation in eastern Tarim. Utilizing logging interpretation, porosity calculations, and resistivity measurements, the research assesses the macroscopic distribution of oil and water layers across various structural settings. Single-well analyses provide insights into conceptual microscopic models that explain the current differentiation of oil and water layers. The results show that during the destruction of ancient oil reservoirs, oil layers with better pore structures were the first to be damaged. The reservoir space was occupied by formation water, creating areas with better current physical properties that are now water layers, while oil layers with relatively poorer pore structures were preserved.

Key words

Eastern Tarim Basin / Silurian / Kepingtage Formation / Oil content variability / Oil content variability

Cite this article

Download Citations
Song WANG , GuiWen WANG , LianBo ZENG , et al . Logging evaluation of oil differentiation in Silurian of the Kepingtage Formation reservoirs of the eastern Tarim Basin[J]. Progress in Geophysics. 2025, 40(4): 1527-1539 https://doi.org/10.6038/pg2025II0384

References

Bai B C, Wu G H, Ma B S, et al. Segmented structural characteristics and growth mechanism of transtensional strike-slip fault zone in Tazhong uplift. Xinjiang Petroleum Geology, 2024, 45(4): 409- 416.
Cao Z F, Ling H S, Meng X, et al. NMR logging environment analysis and T2 spectrum oil layer identification method in low permeability reservoir. Well Logging Technology, 2024, 48(3): 370- 379.
Chen H Y, Zhang L Q. Study on the development of high-quality reservoirs of deep clastic rock based on diagenetic facies: taking the Kepingtage Formation in Shun 9 well area of Tarim Basin as an example. Journal of Palaeogeography (Chinese Edition), 2023, 25(6): 1379- 1393.
Chen S, Zhang Y T, Xie Z, et al. Multi-stages of Paleozoic deformation of the fault system in the Tazhong Uplift, Tarim Basin, NW China: Implications for hydrocarbon accumulation. Journal of Asian Earth Sciences, 2024, 265: 106086
Chen Z B. Genesis of oil/water inversion and delineation of oil-bearing area in super-heavy oil reservoirs: A case study of the lower member of Guantao Formation in Block Cheng911-Ping1, Chengdong Oilfield. Petroleum Geology and Recovery Efficiency, 2017, 24(5): 53- 57.
Chi L X, Zhang Z Y, Zhu G Y, et al. The molecular geochemical evidence of two accumulation stages of the Silurian reservoirs in Tazhong Uplift, Tarim Basin. Natural Gas Geoscience, 2020, 31(4): 471- 482.
Duan Z Y, Pang H, Pu Q S, et al. Hydrocarbon accumulation model of Silurian strata of oil-gas reservoir in Tazhong Area, Tarim Basin. Science and Technology Review, 2011, 29(23): 39- 44.
Hou Q J, Wei Z S, Zhao Z Y, et al. Deep basin reservoir in Songliao Basin. Petroleum Exploration and Development, 2006, 33(4): 406- 411.
Hu J, Wang T G, Chen J P, et al. Source recognition and charging analysis of oil in the Silurian bituminous sandstone in the Tarim Basin: Evidences from biomarker compounds. Natural Gas Geoscience, 2015, 26(5): 930- 941.
Hu J X, Yan E, Du W W, et al. Analysis of exploration potential of Silurian oil and gas in the peripheral area of the Manjiaer depression. Special Oil and Gas Reservoirs, 2014, 21(2): 41- 45.
Hu X, Pu L C, Ran A H, et al. Micro formation mechanism of oil-water inversion in reservoirs based on water film theory-An example from the Dawangzhuang Oilfield in Bohai Bay Basin. Fuel, 2024, 359: 130501
Huang R K, Qi T T, Han C, et al. The application of identification method of asphalt sandstone reservoir liquid to the exploration of Tazhong Silurian. Chinese Journal of Engineering Geophysics, 2017, 14(1): 116- 122.
Jia J H. Sedimentary microfacies and sandbody distribution in the clastic tidal environment of the ancient coastal zone: A case study of Silurian in Tazhong area, Tarim basin. Journal of China University of Mining and Technology, 2019, 48(1): 110- 123.
Jiang Z Z, Tang D Q, Sha X G, et al. Structure and evolution of faults in central and northern parts of Tazhong Uplift, Tarim Basin. Bulletin of Geological Science and Technology, 2024, 43(3): 120- 132.
Kadkhodaie R, Kadkhodaie A, Rezaee R. Study of pore system properties of tight gas sandstones based on analysis of the seismically derived velocity deviation log: A case study from the Perth Basin of western Australia. Journal of Petroleum Science and Engineering, 2021, 196: 108077
Li N, Wang K W, Wu H L, et al. Permeability logging evaluation: Current status and development directions. Petroleum Science Bulletin, 2023, 8(4): 432- 444.
Li X Q, Ding H K, Peng P, et al. Provenance of Silurian Kepingtage formation in Tazhong area, Tarim Basin: Evidence from detrital zircon U-Pb geochronology. Earth Science, 2021, 46(8): 2819- 2831.
Luo C M, Liang X X, Huang S Y, et al. Three-layer structure model of strike-slip faults in the Tazhong Uplift and its formation mechanism. Oil and Gas Geology, 2022, 43(1): 118- 131. 118-131, 148
X X, Bai Z K, Zhao F Y. Hydrocarbon accumulation and distributional characteristics of the Silurian reservoirs in the Tazhong uplift of the Tarim basin. Earth Science Frontiers, 2008, 15(2): 156- 166.
Peng L, Wang Z B, Yang J P, et al. Characteristics and controlling factors of low-permeability reservoirs in Silurian Kepingtage Formation, 10th tectonic belt in the Tazhong area, Tarim Basin. Petroleum Geology and Experiment, 2019, 41(3): 355- 362.
Rezaee R, Saeedi A, Clennell B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. Journal of Petroleum Science and Engineering, 2012, 88-89: 92- 99.
Wang Q H, Cai Z Z, Zhang Y T, et al. Research progress and trend of ultra-deep strike-slip fault-controlled hydrocarbon reservoirs in Tarim basin. Xinjiang Petroleum Geology, 2024, 45(4): 379- 386.
Wang X D, Tian F, Yuan X Y. Improved pore structure prediction based on a stacking machine learning model for low-permeability reservoir in Tazhong area, Tarim Basin. Geoenergy Science and Engineering, 2024, 241: 213135
Wei X, Wang G W, Wang M, et al. Experimental study on the lower limit of NMR logging physical evaluation and temperature-pressure characteristics of low-porosity and low-permeability sandstone. Progress in Geophysics, 2024, 39(5): 1979- 1988.
Wu Y, Chen H H, Zhao Y T, et al. Evidences and controlling factors of hydrocarbon charging in the Late Silurian in the north slope of the Tazhong Uplift, Tarim Basin. Oil and Gas Geology, 2017, 38(2): 292- 301.
Xiong C, Shen C G, Zhao X X, et al. Segmentation of strike-slip faults and its controls on hydrocarbon accumulation in Tarim basin: A case study of F17 strike-slip fault zone. Xinjiang Petroleum Geology, 2024, 45(4): 417- 424.
Xu Y J, Zhong D K, Sun H T. Reservoir characteristics and main control factors of the lower sandstone member Kepingtage formation of Silurian in Tazhong area, Tarim Basin. Science and Technology Review, 2012, 30(15): 22- 28.
Yan K, Ren H Q. Oil/water inversion and juxtaposition in heavy oil reservoirs: Taking 6-7 sand members of Guantao Formation, Gudao Oilfield as an example. Petroleum Exploration and Development, 2009, 36(5): 635- 640.
Yang S, Liu X F, Lu Y C, et al. Sedimentary characteristics and petroleum geological significance of ancient shelf sand ridges: A case study of lower member of Silurian Kepingtage Formation in Tarim Basin. Earth Science-Journal of China University of Geosciences, 2014, 39(7): 858- 870.
Yu C L, Lin C Y, Wang Z Y. Oil water Inversion and Its Genetic Mechanism of Badaowan Reservoir in Well Block Xia9 of Junggar Basin. Journal of Oil and Gas Technology, 2008, 30(5): 32- 36.
Zeng Q L, Wang L B, Wang C F, et al. Sedimentary system types and distribution of the 3rd upper sub-member of Silurian Kepingtag Formation in Tazhong area, Tarim Basin. China Petroleum Exploration, 2019, 24(1): 95- 104.
Zhang C Z, Yu H F, Zhang H Z, et al. Characteristic, genesis and geologic meaning of strike-slip fault system in Tazhong area. Journal of Southwest Petroleum University (Science and Technology Edition), 2008, 30(5): 22- 26.
Zhang J L, Qin L J, Zhang Z J. Depositional facies, diagenesis and their impact on the reservoir quality of Silurian sandstones from Tazhong area in central Tarim Basin, western China. Journal of Asian Earth Sciences, 2008, 33(1-2): 42- 60.
Zhang Z P, Wang L Y, Deng S, et al. Kinematic characteristics and genesis analysis of segmental deformation in Tazhong No. 1 structural belt, Tarim Basin. Geological Review, 2020, 66(4): 881- 892.
秉辰, 光辉, 兵山, 等. 塔中凸起张扭走滑断裂带分段构造特征及生长机制. 新疆石油地质, 2024, 45(4): 409- 416.
志锋, 狐松, , 等. 低渗透率储层核磁共振测井环境分析与T2谱油层识别方法. 测井技术, 2024, 48(3): 370- 379.
海颖, 立强. 基于成岩相的深层碎屑岩优质储集层发育规律研究: 以塔里木盆地顺9井区柯坪塔格组为例. 古地理学报, 2023, 25(6): 1379- 1393.
振标. 超稠油油藏油水倒置成因及含油面积圈定探析——以埕东油田埕911-平1块馆下段为例. 油气地质与采收率, 2017, 24(5): 53- 57.
林贤, 志遥, 光有, 等. 塔里木盆地塔中志留系油藏两期成藏的分子地球化学证据. 天然气地球科学, 2020, 31(4): 471- 482.
中钰, , 青山, 等. 塔里木盆地塔中地区志留系油气成藏模式. 科技导报, 2011, 29(23): 39- 44.
启军, 兆胜, 占银, 等. 松辽盆地的深盆油藏. 石油勘探与开发, 2006, 33(4): 406- 411.
, 铁冠, 建平, 等. 塔里木盆地志留系沥青砂油源及充注期次分析——来自生物标志化合物的证据. 天然气地球科学, 2015, 26(5): 930- 941.
金祥, , 伟维, 等. 环满加尔坳陷志留系油气勘探潜力分析. 特种油气藏, 2014, 21(2): 41- 45.
若坤, 婷婷, , 等. 塔中志留系沥青砂岩储层流体性质识别方法及应用. 工程地球物理学报, 2017, 14(1): 116- 122.
进华. 古海岸带碎屑潮汐环境沉积微相与砂体分布——以塔中地区志留系为例. 中国矿业大学学报, 2019, 48(1): 110- 123.
忠正, 大卿, 旭光, 等. 塔里木盆地塔中隆起中北部地区断裂构造特征及演化. 地质科技通报, 2024, 43(3): 120- 132.
, 克文, 宏亮, 等. 渗透率测井评价: 现状及发展方向. 石油科学通报, 2023, 8(4): 432- 444.
祥权, 洪坤, , 等. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 2021, 46(8): 2819- 2831.
彩明, 鑫鑫, 少英, 等. 塔里木盆地塔中隆起走滑断裂的三层结构模型及其形成机制. 石油与天然气地质, 2022, 43(1): 118- 131. 118-131, 148
修祥, 忠凯, 风云. 塔里木盆地塔中隆起志留系油气成藏及分布特点. 地学前缘, 2008, 15(2): 156- 166.
, 振彪, 建平, 等. 塔里木盆地塔中10号构造带志留系柯坪塔格组低渗储层特征及控制因素. 石油实验地质, 2019, 41(3): 355- 362.
清华, 振忠, 银涛, 等. 塔里木盆地超深层走滑断控油气藏研究进展与趋势. 新疆石油地质, 2024, 45(4): 379- 386.
, 贵文, , 等. 低孔低渗砂岩核磁共振测井物性评价下限及温压特性实验研究. 地球物理学进展, 2024, 39(5): 1979- 1988.
, 红汉, 玉涛, 等. 塔中地区北坡志留系晚期油气充注证据及控制因素. 石油与天然气地质, 2017, 38(2): 292- 301.
, 春光, 星星, 等. 塔里木盆地走滑断裂分段性及控藏作用——以FI17断裂带为例. 新疆石油地质, 2024, 45(4): 417- 424.
燕军, 大康, 海涛. 塔中地区柯坪塔格组下砂岩段储层特征和主控因素. 科技导报, 2012, 30(15): 22- 28.
, 怀强. 稠油油藏油水倒置现象探讨——以孤岛油田中一区馆陶组6-7砂层组为例. 石油勘探与开发, 2009, 36(5): 635- 640.
, 晓峰, 永潮, 等. 古陆架砂脊沉积特征及其石油地质意义: 以塔里木盆地志留系柯坪塔格组下段为例. 地球科学(中国地质大学学报), 2014, 39(7): 858- 870.
成林, 承焰, 正允. 准噶尔盆地夏9井区八道湾组油水倒置型油藏特征及成因. 石油天然气学报, 2008, 30(5): 32- 36.
庆鲁, 力宝, 朝锋, 等. 塔中地区志留系柯坪塔格组上3亚段沉积体系类型及分布规律. 中国石油勘探, 2019, 24(1): 95- 104.
承泽, 红枫, 海祖, 等. 塔中地区走滑断裂特征、成因及地质意义. 西南石油大学学报(自然科学版), 2008, 30(5): 22- 26.
仲培, 璐瑶, , 等. 塔里木盆地塔中I号构造带分段变形的运动学特征与成因探讨. 地质论评, 2020, 66(4): 881- 892.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(15044 KB)

Accesses

Citation

Detail

Sections
Recommended

/