Research progress on intelligent identification methods for well logging lithofacies based on deep learning

LiYuan WANG, HongQi LIU, Chao CHEN, Li SHEN, Yu YE, HongXiu CHENG, JinMan QIU, ShuZhou HE

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1773-1787.

PDF(5565 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5565 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1773-1787. DOI: 10.6038/pg2025II0394

Research progress on intelligent identification methods for well logging lithofacies based on deep learning

Author information +
History +

Abstract

Accurate identification and classification of lithofacies provide essential support for reservoir evaluation, fluid identification, and reservoir characterization, serving as a critical factor in locating high-quality reservoir development zones and favorable hydrocarbon accumulation areas. Core observation and thin-section analysis are the primary sources of first-hand data for direct lithofacies identification. However, due to limitations in core availability and high analytical costs, lithofacies recognition often requires the integration of well logging data. Compared to traditional well logging-based lithofacies identification methods, deep learning offers the advantages of automated and efficient lithofacies recognition, with improved interpretative accuracy and reduced uncertainty. To address these challenges, this study reviews the application of deep learning in lithofacies recognition using well logging data, systematically summarizing the research findings from two aspects: application conditions and effectiveness. Specifically, the study focuses on lithofacies recognition models based on conventional well logging and models integrating conventional and electrical imaging logging. Drawing on previous research, this paper proposes a preliminary intelligent lithofacies recognition model tailored to the complexities of carbonate lithofacies. Finally, it highlights the challenges in applying intelligent recognition models to well logging lithofacies identification and discusses future development trends in this field.

Key words

Lithofacies identification / Deep learning / Conventional logging / Electrical imaging logging / Carbonate rocks

Cite this article

Download Citations
LiYuan WANG , HongQi LIU , Chao CHEN , et al . Research progress on intelligent identification methods for well logging lithofacies based on deep learning[J]. Progress in Geophysics. 2025, 40(4): 1773-1787 https://doi.org/10.6038/pg2025II0394

References

An P, Cao D P. Research and application of logging lithology identification based on deep learning. Progress in Geophysics, 2018, 33(3): 1029- 1034.
Bahdanau D, Cho K, Bengio Y. 2016. Neural machine translation by jointly learning to align and translate. arXiv: 1409.0473, doi: 10.48550/arXiv.1409.0473.
Chen C S, Yuan R, Wang C, et al. Image restoration method for micro-resistivity imaging logging based on image decomposition. Journal of Yangtze University (Natural Science Edition), 2019, 16(1): 95- 99.
Chen J Y, Xu X Y, Zhang Y L, et al. Research progress of multimodal knowledge graph in agriculture. Journal of Agricultural Big Data, 2022, 4(3): 126- 134.
Cho K, Van Merriënboer B, Gulcehre C, et al. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. //Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 1724-1734, doi: 10.3115/v1/D14-1179.
Dai Y, Gao Y F, Liu F Y. TransMed: Transformers advance multi-modal medical image classification. Diagnostics, 2021, 11(8): 1384
Denilson B. Understanding machine learning: from theory to algorithms. Computing Reviews, 2016, 57(4): 238
Gers F A, Schraudolph N N, Schmidhuber J. Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 2003, 3: 115- 143.
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Communications of the ACM, 2020, 63(11): 139- 144.
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527- 1554.
Hu Y, Luo D Y, Hua K, et al. Overview on deep learning. CAAI Transactions on Intelligent Systems, 2019, 14(1): 1- 19.
Imamverdiyev Y, Sukhostat L. Lithological facies classification using deep convolutional neural network. Journal of Petroleum Science and Engineering, 2019, 174: 216- 228.
Jiang Y Q, Zhang C, Zhang B J, et al. Characteristics and identification of lithofacies in complex siliceous clastic reservoirs: A case study from Northwestern Sichuan Basin. Natural Gas Industry, 2013, 33(4): 31- 36.
Jiao J. 2018. Research on underwater sonar image classification method based on deep learning[Master's thesis] (in Chinese). Harbin: Harbin Engineering University.
Lai J, Wang G W, Wang S N, et al. Overview and research progress in logging recognition method of clastic reservoir diagenetic facies. Journal of Central South University (Science and Technology), 2013, 44(12): 4942- 4953.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436- 444.
Li C, Wang X, Feng Z, et al. Comprehensive logging identification of microbial carbonate lithofacies based on KNN classification algorithm: a case study of Dengying Formation in GM area, Sichuan Basin. Marine Origin Petroleum Geology, 2023, 28(4): 433- 440.
Li N, Xiao C W, Wu L H, et al. The innovation and development of log evaluation for complex carbonate reservoir in China. Well Logging Technology, 2014, 38(1): 1- 10.
Li N, Xu B S, Wu H L, et al. Application status and prospects of artificial intelligence in well logging and formation evaluation. Acta Petrolei Sinica, 2021, 42(4): 508- 522.
Li Q H, Pei J B. Interpretation method and application of FMI imaging logging. Journal of Harbin University of Commerce (Natural Sciences Edition), 2014, 30(6): 715- 719. 715-719, 735
Liu A J, Zuo L, Li J J, et al. Application of principal component analysis in carbonate lithology identification: a case study of the Cambrian carbonate reservoir in YH field. Oil and Gas Geology, 2013, 34(2): 192- 196.
Liu C Z, Xiang W B. Recognition of pneumonia type based on improved convolution neural network. Computer Measurement & Control, 2017, 25(4): 185- 188.
Liu J, Min X L, Qi Z L, et al. Multi-dimensional lithology identification method based on microresistivity image logging. Well Logging Technology, 2023, 47(6): 726- 735.
Liu M C, Shi J X, Li Z, et al. Towards better analysis of deep convolutional neural networks. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(1): 91- 100.
Liu Z B, Cui Y M, Li J H, et al. Logging curve identification of tight sandstone reservoir lithofacies type based on convolutional neural network. Journal of Heilongjiang University of Science and Technology, 2023, 33(3): 376- 383.
Luo X, Yan J P, Wang M, et al. Optimization and application of borehole wall restoration method of FMI logging image. Well Logging Technology, 2021, 45(4): 386- 393.
Nishitsuji Y, Exley R. Elastic impedance based facies classification using support vector machine and deep learning. Geophysical Prospecting, 2019, 67(4): 1040- 1054.
Pang X Q, Li P L, Chen D X, et al. Characteristics and basic model of facies controlling oil and gas in continental fault basin. Journal of Palaeogeography, 2011, 13(1): 55- 74.
Pascanu R, Mikolov T, Bengio Y. 2013. On the difficulty of training Recurrent Neural Networks. arXiv: 1211.5063, doi: 10.48550/arXiv.1211.5063.
Peng B, Bai J, Li W J, et al. Survey on visual transformer for image classification. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320- 344.
Qiang W F, Pan M, Liu Q B, et al. Design of Las format logging data converter for deep learning. Science Technology and Engineering, 2021, 21(1): 248- 253.
Ronneberger O, Fischer P, Brox T. 2015. U-Net: Convolutional networks for biomedical image segmentation. arXiv: 1505.04597, doi: 10.48550/arXiv.1505.04597.
Shi P Z. 2016. Application of FMI electrical imaging logging technology in the study of lithology and lithofacies of Yingshan Formation in the Middle 43 well area[Master's thesis] (in Chinese). Chengdu: Southwest Petroleum University.
Sun J M, Zhao J P, Lai F Q, et al. Methods to fill in the gaps between pads of electrical logging images. Well Logging Technology, 2011, 35(6): 532- 537.
Sun X L, Park J, Kang K, et al. 2017. Novel hybrid CNN-SVM model for recognition of functional magnetic resonance images. //2017 IEEE International Conference on Systems, Man, and Cybernetics. Banff, AB, Canada: IEEE, 1001-1006.
Tang X Y, Liu Z D, Zou Z Y, et al. The identification method of igneous rock lithology in 69 area of Junggar Basin. Journal of Southwest Petroleum University (Science and Technology Edition), 2009, 31(1): 29- 32.
Tian H, Zhang J Y, Li C, et al. The application of image logging in the identification of microbialite facies in Dengying formation, Sichuan Basin. Journal of Southwest Petroleum University (Science Technology Edition), 2020, 42(5): 75- 85.
Tian M Z, Zhu C, Li S M, et al. Application of logging lithofacies identification technology of lacustrine carbonate rocks: a case study of Yingxi area, Qaidam Basin. China Petroleum Exploration, 2023, 28(1): 135- 143.
Vaswani A, Shazeer N, Parmar N, et al. 2023. Attention is all you need. arXiv: 1706.03762, doi: 10.48550/arXiv.1706.03762.
Wang D H, Zhao T, Yu W H, et al. Deep multimodal complementarity learning. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10213- 10224.
Wang H P, Wang W, Yang D, et al. On automatic recognition and conversion method of log data format based on the features database. Well Logging Technology, 2014, 38(1): 65- 68.
Wang Q Y. 2021. Research on sedimentary microfacies recognition based on deep learning[Master's thesis] (in Chinese). Xi'an: Xi'an Shiyou University.
Wang X, Zhang X. The statistical methods for extracting texture features of borehole imaging logging diagram. Journal of Oil and Gas Technology, 2012, 34(4): 83- 87.
Wang Z F, Gao N, Zeng R, et al. A gaps filling method for electrical logging images based on a deep learning model. Well Logging Technology, 2019, 43(6): 578- 582.
Wang Z J, Dong H C, Fang T E, et al. Logging lithofacies analysis based on unsupervised learning. Geophysical Prospecting for Petroleum, 2021, 60(3): 403- 413.
Wu D. 2016. Research on sparse representation and its application in underwater vision navigation data[Ph. D. thesis] (in Chinese). Harbin: Harbin Engineering University.
Wu S K, Cao J X. Lithology identification method based on continuous restricted Boltzmann machine and support vector machine. Progress in Geophysics, 2016, 31(2): 821- 828.
Wu Y P, Yang Y X, W J, et al. Robust unilateral alignment for subsurface lithofacies classification. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4501913
Wu Z Y, Zhang X, Zhang C L, et al. Lithology identification based on LSTM recurrent neural network. Lithologic Reservoirs, 2021, 33(3): 120- 128.
Yuan Z W, Duan Z J, Zhang C Y, et al. Interpretation of logging lithology in carbonate reservoirs based on Markov Chain probability model. Xinjiang Petroleum Geology, 2017, 38(1): 96- 102.
Zeng L L, Tang H B, Niu Y X, et al. Lithofacies identification method based on LSTM stacked residual network. Computer and Modernization, 2023,(8): 38- 43.
Zhang B, Zhu J, Su H. Toward the third generation of artificial intelligence. Scientia Sinica Informationis, 2020, 50(9): 1281- 1302.
Zhang J, Shem A J, Hu A P, et al. Research on artificial intelligence identification approach for carbonate thin sections based on deep learning. Marine Origin Petroleum Geology, 2023, 28(4): 337- 348.
Zhang Z H, Pfister T. 2021. Learning fast sample re-weighting without reward data. arXiv: 2109.03216, doi: 10.48550/arXiv.2109.03216.
Zhang Z G, Yang Y H, Xia L X. The application of self-organizing feature map neural network to logging lithological identification. Progress in Geophysics, 2005, 20(2): 332- 336.
Zhu L P, Li H Q, Yang Z G, et al. Intelligent logging lithological interpretation with convolution neural networks. Petrophysics, 2018, 59(6): 799- 810.
Zhuang F, Qi Z Y, Duan K, et al. A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 2021, 109(1): 43- 76.
, 丹平. 基于深度学习的测井岩性识别方法研究与应用. 地球物理学进展, 2018, 33(3): 1029- 1034.
长胜, , , 等. 基于图像分解的微电阻率成像测井图像修复方法. 长江大学学报(自然科学版), 2019, 16(1): 95- 99.
佳云, 向英, 永龙, 等. 多模态知识图谱在农业中的研究进展. 农业大数据学报, 2022, 4(3): 126- 134.
, 东阳, , 等. 关于深度学习的综述与讨论. 智能系统学报, 2019, 14(1): 1- 19.
裕强, , 本健, 等. 复杂砂砾岩储集体岩相特征及识别技术——以川西北地区为例. 天然气工业, 2013, 33(4): 31- 36.
焦佳. 2018. 基于深度学习的水下声纳图像分类方法研究[硕士论文]. 哈尔滨: 哈尔滨工程大学.
, 贵文, 书南, 等. 碎屑岩储层成岩相测井识别方法综述及研究进展. 中南大学学报(自然科学版), 2013, 44(12): 4942- 4953.
, , , 等. 基于KNN分类算法的微生物白云岩岩相测井综合识别——以四川盆地GM地区灯四段为例. 海相油气地质, 2023, 28(4): 433- 440.
, 承文, 丽红, 等. 复杂碳酸盐岩储层测井评价: 中国的创新与发展. 测井技术, 2014, 38(1): 1- 10.
, 彬森, 宏亮, 等. 人工智能在测井地层评价中的应用现状及前景. 石油学报, 2021, 42(4): 508- 522.
全厚, 警博. FMI成像测井解释方法及应用. 哈尔滨商业大学学报(自然科学版), 2014, 30(6): 715- 719. 715-719, 735
爱疆, , 景景, 等. 主成分分析法在碳酸盐岩岩性识别中的应用——以YH地区寒武系碳酸盐岩储层为例. 石油与天然气地质, 2013, 34(2): 192- 196.
长征, 文波. 基于改进卷积神经网络的肺炎影像判别. 计算机测量与控制, 2017, 25(4): 185- 188.
, 宣霖, 仲黎, 等. 基于电成像测井的多维度岩性识别方法. 测井技术, 2023, 47(6): 726- 735.
宗堡, 雨萌, 军辉, 等. 基于卷积神经网络的致密砂岩储层岩相类型测井曲线判识. 黑龙江科技大学学报, 2023, 33(3): 376- 383.
, 建平, , 等. FMI测井图像井壁复原方法优化及应用. 测井技术, 2021, 45(4): 386- 393.
雄奇, 丕龙, 冬霞, 等. 陆相断陷盆地相控油气特征及其基本模式. 古地理学报, 2011, 13(1): 55- 74.
, , 文静, 等. 面向图像分类的视觉Transformer研究进展. 计算机科学与探索, 2024, 18(2): 320- 344.
伟帆, , 庆彬, 等. 面向深度学习的Las格式测井数据转换器设计. 科学技术与工程, 2021, 21(1): 248- 253.
石平舟. 2016. FMI电成像测井技术在中古43井区鹰山组岩性岩相研究中的应用[硕士论文]. 成都: 西南石油大学.
建孟, 建鹏, 富强, 等. 电测井图像空白条带填充方法. 测井技术, 2011, 35(6): 532- 537.
小燕, 之的, 正银, 等. 准噶尔盆地六九区火成岩岩性识别方法研究. 西南石油大学学报(自然科学版), 2009, 31(1): 29- 32.
, 建勇, , 等. 成像测井在灯影组微生物岩岩相识别中的应用. 西南石油大学学报(自然科学版), 2020, 42(5): 75- 85.
明智, , 森明, 等. 湖相碳酸盐岩测井岩相识别技术与应用——以柴达木盆地英西地区为例. 中国石油勘探, 2023, 28(1): 135- 143.
慧萍, , , 等. 基于特征库的测井数据格式自动识别与转换方法. 测井技术, 2014, 38(1): 65- 68.
王清媛. 2021. 基于深度学习的沉积微相识别研究[硕士论文]. 西安: 西安石油大学.
, . 成像测井图像纹理特征提取的统计方法研究. 石油天然气学报, 2012, 34(4): 83- 87.
哲峰, , , 等. 基于深度学习模型的测井电成像空白条带充填方法. 测井技术, 2019, 43(6): 578- 582.
宗俊, 洪超, 廷恩, 等. 基于无监督学习的测井岩相分析技术及其应用. 石油物探, 2021, 60(3): 403- 413.
吴迪. 2016. 稀疏表示理论研究及其在水下视觉导航数据中的应用[博士论文]. 哈尔滨: 哈尔滨工程大学.
施楷, 俊兴. 基于连续限制玻尔兹曼机的支持向量机岩性识别方法. 地球物理学进展, 2016, 31(2): 821- 828.
中原, , 春雷, 等. 基于LSTM循环神经网络的岩性识别方法. 岩性油气藏, 2021, 33(3): 120- 128.
照威, 正军, 春雨, 等. 基于马尔科夫概率模型的碳酸盐岩储集层测井岩性解释. 新疆石油地质, 2017, 38(1): 96- 102.
丽丽, 华贝, 艺晓, 等. 基于LSTM堆叠残差网络的岩相识别方法. 计算机与现代化, 2023,(8): 38- 43.
, , . 迈向第三代人工智能. 中国科学(信息科学), 2020, 50(9): 1281- 1302.
, 安江, 安平, 等. 基于深度学习的碳酸盐岩薄片人工智能鉴定方法研究. 海相油气地质, 2023, 28(4): 337- 348.
治国, 毅恒, 立显. 自组织特征映射神经网络在测井岩性识别中的应用. 地球物理学进展, 2005, 20(2): 332- 336.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5565 KB)

Accesses

Citation

Detail

Sections
Recommended

/