Research of non-repetitive time-shift seismic matching processing based on OBC and towed cable data

Wei LIU, Xiao LEI, Bo SUI, YiBin LI, FengYing CHEN, ZhenDong LIU, XiangChun WANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2135-2147.

PDF(19288 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(19288 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2135-2147. DOI: 10.6038/pg2025II0432

Research of non-repetitive time-shift seismic matching processing based on OBC and towed cable data

Author information +
History +

Abstract

Time-lapse seismic technology plays a crucial role in monitoring changes in the fluid reservoir of offshore oil and gas fields. Conventional time-shifted seismic data collection is required to be repeated, but the actual data collection is difficult to be completely repeated due to different purposes. A lot of 2D and 3D datasets can meet the requirements of time-shift seismic comparison through consistency processing. With the development of multi-component seismic exploration technology, research on time-lapse seismic monitoring by combining multi-component seismic data with early towed streamer data is still limited. In order to further study in time-shift seismic research, This paper conducts a study on non-repetitive time-lapse seismic matching processing based on early towed streamer data and recent Ocean Bottom Cable (OBC) seismic data collected from an oil field in the South China Sea. Due to significant differences in acquisition time, acquisition methods, parameters, and seismic geometry between the two datasets, noise, multiples, and ghost waves exhibit distinct differences. After performing denoising, multiple removal, and ghost wave suppression on the two datasets, the study analyzes their differences, focusing on specific factors such as amplitude, frequency, signal-to-noise ratio (SNR), wavelet phase, and time difference. A mutual equalization method is selected for consistency matching processing of both datasets before pre-stack depth migration. Subsequently, based on the migrated results, it is analyzed whether post-migration consistency matching is required. The results of the study indicate that the raw OBC data has stronger amplitude energy, narrower frequency bandwidth, higher signal-to-noise ratio, and smaller wavelet sidelobes compared to the raw towed streamer data. The consistency processing workflow can effectively match the differences in amplitude energy, frequency bandwidth, signal-to-noise ratio, wavelet phase, and time difference between the two datasets. After consistency matching, both datasets can be used for time-lapse comparison analysis. This research provides a feasible matching processing method for non-repetitive time-lapse seismic studies using multi-component OBC seismic data in conjunction with towed cable data, laying the foundation for subsequent time-lapse seismic studies based on multi-component data.

Key words

Non-repetition / Time-shift seismic / Matching processing / Time-shift correlation

Cite this article

Download Citations
Wei LIU , Xiao LEI , Bo SUI , et al . Research of non-repetitive time-shift seismic matching processing based on OBC and towed cable data[J]. Progress in Geophysics. 2025, 40(5): 2135-2147 https://doi.org/10.6038/pg2025II0432

References

Bahorich M, Farmer S. 3-D seismic discontinuity for faults and stratigraphic features: the coherence cube. The Leading Edge, 1995, 14(10): 1053- 1058.
Chen C Q, Dai H T, Gao Q, et al. A processing method for seismic data consistency under complex surface conditions and its applications. Geophysical and Geochemical Exploration, 2023, 47(4): 954- 964.
Fomel S, Jin L. Time-lapse image registration using the local similarity attribute. Geophysics, 2009, 74(2): A7- A11.
Fu X, Innanen K A. Time-lapse seismic imaging using shot gathers with nonrepeatable source wavelets. Geophysics, 2023, 88(1): M17- M30.
Li X F, Wang X T, Lin J, et al. Consistent processing for 3D seismic data merging in Junggar Basin. Oil Geophysical Prospecting, 2018, 53(S2): 33- 41.
Li Z C, Han L G, Zhang F J, et al. Cross-equalization technique for time-lapse seismic. Journal of Jilin University (Earth Science Edition), 2008, 38(S1): 68- 71. 68-71, 89
Liu L, Chen S, Wang Y L, et al. Research on the application of mixed source data matching processing technology in 3D seismic exploration of coal field. Progress in Geophysics, 2024, 39(5): 1951- 1962.
Liu X Y, Chen X H, Bai M, et al. Time-lapse image registration by high-resolution time-shift scan. Geophysics, 2021, 86(3): M49- M58.
Research Group for Yangwu 3-D Processing and Interpretation Integration. Research on analyzing and monitoring method for 3-D seismic data. Oil Geophysical Prospecting, 2002, 37(5): 433- 440.
Rui Y J, Shang X M. Exploration and practice of non-uniform time-lapse seismic key technology in Shengli Oilfield. Geophysical and Geochemical Exploration, 2021, 45(6): 1439- 1447.
Wu D L, Li Z J, Jing B, et al. The problems for land non-repeated time-lapse seismic data processing and its counter measures. Geophysical Prospecting for Petroleum, 2015, 54(4): 427- 434.
Yang H D, Li D S, Zhang H, et al. 2020. Key technology of time-lapse processing on land. //The 2020 International Field Exploration and Development Conference. Chengdu, 130-136, doi: 10.26914/c.cnkihy.2020.042217.
Zhang C Y, Li Y X, Wang X L, et al. Research on wavelet consistency processing methods of GeoEast and its application in emerging data. Oil Geophysical Prospecting, 2022, 57(S2): 29- 34.
Zhou J X, Zhang L, Liu W, et al. Application of a time-lapse seismic gas reservoir monitoring in the Yacheng13-1 gas field. Geophysical Prospecting for Petroleum, 2020, 59(4): 637- 646.
Zhou L, Liao J P, Yuan C, et al. Time-lapse seismic inversion for fluid dynamic monitoring based on the exact Zoeppritz equations. Progress in Geophysics, 2022, 37(5): 2118- 2128.
Zhu Z Y, Wang X L, He Y Y, et al. Research and application of key marine time-lapse seismic technologies. China Offshore Oil and Gas, 2018, 30(4): 76- 85.
超群, 海涛, , 等. 复杂地表条件下地震资料一致性处理方法研究与应用. 物探与化探, 2023, 47(4): 954- 964.
晓峰, 晓涛, , 等. 一致性处理技术在准噶尔盆地三维连片处理中的应用. 石油地球物理勘探, 2018, 53(S2): 33- 41.
卓聪, 立国, 凤蛟, 等. 时移地震数据互均衡处理方法研究. 吉林大学学报(地球科学版), 2008, 38(S1): 68- 71. 68-71, 89
, , 玉玲, 等. 混合震源资料匹配处理技术在煤田三维地震勘查中的应用研究. 地球物理学进展, 2024, 39(5): 1951- 1962.
拥军, 新民. 胜利油田非一致性时移地震关键技术探索与实践. 物探与化探, 2021, 45(6): 1439- 1447.
达理, 宗杰, , 等. 陆上非重复性时移地震资料处理存在的问题与对策. 石油物探, 2015, 54(4): 427- 434.
杨会东, 李道善, 张辉, 等. 2020. 陆上时移地震资料关键处理技术. //2020油气田勘探与开发国际会议论文集. 成都, 130-136, doi: 10.26914/c.cnkihy.2020.042217.
羊屋三维处理, 解释一体化方法研究组. 三维地震数据的分析和监测方法研究. 石油地球物理勘探, 2002, 37(5): 433- 440.
春燕, 亚旭, 晓琳, 等. GeoEast融合数据子波一致性处理技术及其应用研究. 石油地球物理勘探, 2022, 57(S2): 29- 34.
家雄, , , 等. 时移地震气藏监测技术在崖城13-1气田的应用. 石油物探, 2020, 59(4): 637- 646.
, 建平, , 等. 基于精确Zoeppritz方程的时移地震流体动态监测. 地球物理学进展, 2022, 37(5): 2118- 2128.
振宇, 小六, 洋洋, 等. 海上时移地震关键技术研究与应用. 中国海上油气, 2018, 30(4): 76- 85.
邹振, 张建磊, 张立彬, 等. 2021. 时移地震互均衡处理技术. //中国石油学会2021年物探技术研讨会论文集. 成都, 1138-1141, doi: 10.26914/c.cnkihy.2021.014687.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(19288 KB)

Accesses

Citation

Detail

Sections
Recommended

/