Frequency-dependent AVO inversion based on sparse time-frequency analysis

ChenLong LI, XiaoTao WEN, Yun ZHAO, Bo LI, YuQiang ZHANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2040-2049.

PDF(5766 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5766 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2040-2049. DOI: 10.6038/pg2025II0435

Frequency-dependent AVO inversion based on sparse time-frequency analysis

Author information +
History +

Abstract

Research has shown that seismic waves usually undergo different degrees of velocity dispersion and attenuation when they encounter hydrocarbon-bearing reservoirs during propagation, which also leads to a close correlation between the reflection coefficient and frequency. Therefore, we can utilize the velocity dispersion property extracted by hydrocarbon-bearing reservoirs AVO inversion for fluid identification. Frequency-dependent AVO inversion is performed based on the amplitude spectrum obtained from the time-frequency analysis of seismic data. The resolution and accuracy of the time-frequency analysis are critical factors influencing the results of dispersion attribute inversion. In recent years, time-frequency analysis methods based on sparse representation have gained attention due to their high time-frequency resolution. This paper proposes a more flexible sparse time-frequency analysis method based on compressed sensing theory and constrained by the LP quasi-norm. Numerical models demonstrate that this method achieves higher resolution time-frequency distributions, making it suitable for seismic signal analysis. By integrating this LP quasi-norm sparse time-frequency analysis method with frequency-dependent AVO inversion, it is possible to accurately extract P-wave dispersion attributes, thereby identifying fluids in reservoirs. Field data validation shows that the frequency-dependent AVO inversion method based on sparse time-frequency analysis not only provides high resolution but also offers reliable fluid indicators for hydrocarbon reservoirs, offering strong technical support for the identification of complex reservoirs.

Key words

LP quasi-norm / Time-frequency analysis / Frequency-dependent AVO / Dispersion attribute / Reservoir identification

Cite this article

Download Citations
ChenLong LI , XiaoTao WEN , Yun ZHAO , et al . Frequency-dependent AVO inversion based on sparse time-frequency analysis[J]. Progress in Geophysics. 2025, 40(5): 2040-2049 https://doi.org/10.6038/pg2025II0435

References

Cohen L . Generalized phase-space distribution functions. Journal of Mathematical Physics, 1966, 7 (5): 781- 786.
Gabor D . Theory of Communication. New York: Dover Publications, 2005 58
Han L , Han L G , Li Z . Inverse spectral decomposition with the SPGL1 algorithm. Journal of Geophysics and Engineering, 2012, 9 (4): 423- 427.
Hao Y J , Zhang H , Zhang S , et al. High-resolution self-adaptive Gabor time-frequency analysis method based on group-sparse regularized inversion. Oil Geophysical Prospecting, 2023, 58 (2): 412- 421.
Hu J F , He X , Li W G , et al. Parameter estimation of maneuvering targets in OTHR based on sparse time-frequency representation. Journal of Systems Engineering and Electronics, 2016, 27 (3): 574- 580.
Huang G T , Li J Y , Chen X H , et al. Frequency-dependent AVO reservoir identification method based on sparse constrained inversion spectral decomposition. Chinese J. Geophys., 2017, 60 (10): 3984- 3994.
Jing Y , Tian R F , Guo S J . Research on frequency attenuation gradient method based on LMSST time frequency analysis. Progress in Geophysics, 2024, 39 (2): 689- 703.
Li K , Yin X Y , Zong Z Y . Time-frequency-domain FAVO fluid discrimination method based on matching pursuit spectrum decomposition. Acta Petrolei Sinica, 2016, 37 (6): 777- 786.
Luo Q , Li M , Huang S Z , et al. Time-frequency analysis method of fusing sequence stratigraphy identifies favorable sand bodies: taking Weizhou A tectonic lake bottom fan as an example. Progress in Geophysics, 2024, 39 (5): 2090- 2098.
Luo X , Chen X H , B N , et al. Frequency-dependent AVO inversion using a modified window-parameter-optimized S-transform for high gas-saturation reservoir delineation. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3000805
Ma Y , Liao J P , Wen P , et al. Research on P-wave dispersion and attenuation of propagating in the direction of paralleling to a periodically layered fluid saturated porous medium model. Progress in Geophysics, 2024, 39 (1): 197- 206.
Morlet J , Arens G , Fourgeau E , et al. Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media. Geophysics, 1982, 47 (2): 203- 221.
Portniaguine O, Castagna J. 2004. Inverse spectral decomposition. //74th Annual International Meeting, SEG, Expanded Abstracts, 1786-1789, doi: 10.1190/1.1845172.
Puryear C I , Portniaguine O N , Cobos C M , et al. Constrained least-squares spectral analysis: application to seismic data. Geophysics, 2012, 77 (5): V143- V167.
Robinson E A . Predictive decomposition of time series with application to seismic exploration. Geophysics, 1967, 32 (3): 418- 484.
Sattari H , Gholami A , Siahkoohi H R . Seismic data analysis by adaptive sparse time-frequency decomposition. Geophysics, 2013, 78 (5): V207- V217.
Shi L , Li Y Q , Li J Y , et al. Frequency-dependent AVO analysis based on analytical solution of viscoelastic wave equation. Progress in Geophysics, 2022, 37 (1): 251- 266.
Shuey R T . A simplification of the Zoeppritz equations. Geophysics, 1985, 50 (4): 609- 614.
Smith G C , Gidlow P M . Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting, 1987, 35 (9): 993- 1014.
Stockwell R G , Mansinha L , Lowe R P . Localization of the complex spectrum: the S transform. IEEE Transactions on Signal Processing, 1996, 44 (4): 998- 1001.
Tian L , Hu J J . Sparse short-time Fourier transform spectral decomposition method and its application. Progress in Geophysics, 2021, 36 (6): 2581- 2587.
Ville J . Theorie et application dela notion de signal analytique. Cables et Transmissions, 1948, 2 (1): 61- 74.
Wang Y H . Seismic time-frequency spectral decomposition by matching pursuit. Geophysics, 2007, 72 (1): V13- V20.
Wang Y Q, Peng Z M, He Y M. 2016. Time-frequency representation for seismic data using sparse S transform. //2016 2nd IEEE International Conference on Computer and Communications. Chengdu, China: IEEE, 1923-1926, doi: 10.1109/CompComm.2016.7925036.
Wilson A, Chapman M, Li X Y. 2009. Frequency-dependent AVO inversion. //SEG Technical Program Expanded Abstracts. Houston, Texas: SEG, 341-345.
Woodworth J , Chartrand R . Compressed sensing recovery via nonconvex shrinkage penalties. Inverse Problems, 2016, 32 (7): 075004
Wu X Y , Liu T Y . Spectral decomposition of seismic data with reassigned smoothed pseudo Wigner-Ville distribution. Journal of Applied Geophysics, 2009, 68 (3): 386- 393.
Wu X Y, Chapman M, Wilson A, et al. 2010. Estimating seismic dispersion from pre-stack data using frequency-dependent AVO inversion. //SEG Technical Program Expanded. Denver, Colorado: SEG, 425-429, doi: 10.1190/1.3255572.
Zhang S X , Yin X Y , Zhang G Z . Dispersion-dependent attribute and application in hydrocarbon detection. Journal of Geophysics and Engineering, 2011, 8 (4): 498- 507.
Zhang Y Q , Wen X T , Wu H , et al. Seismic acoustic impedance inversion using Lp quasi-norm sparse constraint and alternating direction multiplier algorithm. Geophysical Prospecting for Petroleum, 2022, 61 (5): 856- 864.
Zhao W J , Yang W Y . Progress of frequency-dependent AVO hydrocarbon detection technology. Progress in Geophysics, 2014, 29 (6): 2858- 2865.
Zhao Y , Wen X T , Yin C , et al. Prestack seismic inversion with reweighted L1-norm sparse constraints. Oil Geophysical Prospecting, 2023, 58 (6): 1398- 1409.
亚炬 , , , 等. 应用组稀疏正则化反演的高分辨率自适应Gabor时频分析方法. 石油地球物理勘探, 2023, 58 (2): 412- 421.
广谭 , 景叶 , 小宏 , 等. 基于稀疏约束反演谱分解的频变AVO储层识别方法. 地球物理学报, 2017, 60 (10): 3984- 3994.
, 仁飞 , 姝君 . 基于LMSST时频分析的频率衰减梯度方法研究. 地球物理学进展, 2024, 39 (2): 689- 703.
, 兴耀 , 兆云 . 基于匹配追踪谱分解的时频域FAVO流体识别方法. 石油学报, 2016, 37 (6): 777- 786.
, , 时卓 , 等. 基于层序地层学的时频分析技术识别有利砂体——以涠洲A构造湖底扇为例. 地球物理学进展, 2024, 39 (5): 2090- 2098.
, 建平 , , 等. 流体饱和周期性层状孔隙介质模型平行层面传播的纵波频散和衰减研究. 地球物理学进展, 2024, 39 (1): 197- 206.
, 远强 , 景叶 , 等. 基于黏弹波动方程解析解的频变AVO分析. 地球物理学进展, 2022, 37 (1): 0251- 0266.
, 津健 . 稀疏短时傅里叶变换谱分解方法及应用. 地球物理学进展, 2021, 36 (6): 2581- 2587.
雨强 , 晓涛 , , 等. 基于Lp拟范数稀疏约束和交替方向乘子算法的波阻抗反演. 石油物探, 2022, 61 (5): 856- 864.
万金 , 午阳 . 频变AVO油气检测技术进展. 地球物理学进展, 2014, 29 (6): 2858- 2865.
, 晓涛 , , 等. 叠前重加权L1范数稀疏约束的地震反演方法. 石油地球物理勘探, 2023, 58 (6): 1398- 1409.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5766 KB)

Accesses

Citation

Detail

Sections
Recommended

/