Prediction method and application of intelligent fusion model for rock mechanics parameters of complex lithology reservoir

Jian XIONG, ChongYang LIU, Yi CAO, XiangJun LIU, DeJiang LUO, JianJun WU, Bing LI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1760-1772.

PDF(11860 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11860 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1760-1772. DOI: 10.6038/pg2025II0448

Prediction method and application of intelligent fusion model for rock mechanics parameters of complex lithology reservoir

Author information +
History +

Abstract

The lithology of the transitional facies strata between sea and land in the eastern margin of the Ordos Basin is complex, and the rock mechanics parameters and rock physics response are complex, resulting in insufficient prediction accuracy of rock mechanics parameter prediction models based on traditional methods.The rock mechanics test and the matching acoustic wave and density test were adopt, the parameters of rock sample density, acoustic wave velocity, strength and elastic in the study area were gained, and then carry out the prediction research of rock mechanics parameters based on traditional methods. On this basis, multiple algorithms are selected to build different types of rock mechanics parameter prediction models; According to the prediction effect of different algorithm models, an intelligent fusion prediction model is constructed; The research results show that the traditional methods cannot accurately predict the rock mechanics parameters of the marine continental transitional facies strata in the eastern margin of the Ordos Basin. Different machine learning algorithms have different prediction effects on different types of rock mechanics parameters, and the average relative error is more than 20%, that is, a single machine learning algorithm model is difficult to achieve synchronous and accurate prediction of different types of rock mechanics parameters; The intelligent fusion model has a high prediction accuracy for different types of rock mechanics parameters. The average relative errors of the test set and the training set are about 8.14% and 13.02%, respectively, indicating that the model has achieved synchronous and accurate prediction of different types of rock mechanics parameters; This model is applied to the calculation of horizontal principal stress in the research area, and the relative error between the predicted value and the measured value is relatively small, reflecting that the model can be applied to improve the accuracy of the calculation of horizontal principal stress in the formation.

Key words

Ordos Basin / Transitional formation / Complex lithology / Rock mechanics / In-situ stress / Intelligent fusion model

Cite this article

Download Citations
Jian XIONG , ChongYang LIU , Yi CAO , et al . Prediction method and application of intelligent fusion model for rock mechanics parameters of complex lithology reservoir[J]. Progress in Geophysics. 2025, 40(4): 1760-1772 https://doi.org/10.6038/pg2025II0448

References

Armaghani D J, Amin M F M, Yagiz S, et al. Prediction of the uniaxial compressive strength of sandstone using various modeling techniques. International Journal of Rock Mechanics and Mining Sciences, 2016, 85: 174- 186.
Ceryan N. Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks. Journal of African Earth Sciences, 2014, 100: 634- 644.
Chang C D, Zoback M D, Khaksar A. Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 2006, 51(3-4): 223- 237.
Deng H, Meng Z L, Wang Y, et al. Study on empirical formulas for predicting rock mechanical parameters of sandstone reservoirs in Bohai Oilfield. Offshore Oil, 2020, 40(2): 61- 66. 61-66, 95
Dong D Z, Qiu Z, Zhang L F, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas. Acta Sedimentologica Sinica, 2021, 39(1): 29- 45.
Fan X Y, Gong M, Zhang Q G, et al. Prediction of the horizontal stress of the tight sandstone formation in eastern Sulige of China. Journal of Petroleum Science and Engineering, 2014, 113: 72- 80.
Hou L L, Liang L X, Liu X J, et al. Prediction of shale static elastic modulus based on BP neural network. Science Technology and Engineering, 2016, 16(30): 176- 180. 176-180, 195
Hou L L, Liu X J, Liang L X, et al. Investigation of Rock Mechanics and In-situ Stress Characteristics of Bashijiqike Formation. Science Technology and Engineering, 2021, 21(10): 3894- 3903.
Kuang L C, Dong D Z, He W Y, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China. Petroleum Exploration and Development, 2020, 47(3): 435- 446.
Lai J, Wang G W, Fan Z Y, et al. Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs. Petroleum Science Bulletin, 2016, 1(3): 330- 341.
Li N, Xu B S, Wu H L, et al. Application status and prospects of artificial intelligence in well logging and formation evaluation. Acta Petrolei Sinica, 2021, 42(4): 508- 522.
Li W, Tan Z Y. Research on rock strength prediction based on least squares support vector machine. Geotechnical and Geological Engineering, 2017, 35(1): 385- 393.
Lin H Y, Xiong J, Peng M, et al. Research on in-situ stress logging prediction of transversely isotropic continental shale reservoir: case study of the F Formation continental shale oil reservoir in MH Sag, Xinjiang. Natural Gas Geoscience, 2022, 33(10): 1712- 1721.
Momeni E, Armaghani D J, Hajihassani M, et al. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement, 2015, 60: 50- 63.
Wan Y W, Zhang H, Liu X J, et al. Prediction of mechanical parameters for low-permeability gas reservoirs in the Tazhong Block and its applications. Advances in Geo-Energy Research, 2020, 4(2): 219- 228.
Wang X J, Liang L X, Zhao L, et al. Rock mechanics and fracability evaluation of the Lucaogou Formation oil shales in Jimusaer sag, Junggar Basin. Oil & Gas Geology, 2019, 40(3): 661- 668.
Wang Y W, Wang L S, Qin J H, et al. Log evaluation method of rock mechanics and in-situ stress characteristics of tight Conglomerate Formations. Well Logging Technology, 2021, 45(6): 624- 629.
Xian C G, Zhang J H, Chen X, et al. Application of geomechanics in geology-engineering integration. China Petroleum Exploration, 2017, 22(1): 75- 88.
Xiong J, Zhang Q, Liang L X, et al. Prediction method and characteristics of the fracture toughness of Longmaxi Formation shale in Sichuan Basin. Chinese Journal of Underground Space and Engineering, 2019, 15(S2): 541- 547.
Zhang W, Wu J J, Liu X J, et al. Mechanical characteristics and failure mode of marine-continent transitional facies shale: case study of Permian Shanxi Formation in the eastern margin of Ordos Basin, NW China. Natural Gas Geoscience, 2022, 33(7): 1144- 1154.
Zhang Y F, Wang J, Yu L A, et al. An extreme bias-penalized forecast combination approach to commodity price forecasting. Information Sciences, 2022, 615: 774- 793.
Zou C N, Zhao Q, Cong L Z, et al. Development progress, potential and prospect of shale gas in China. Natural Gas Industry, 2021, 41(1): 1- 14.
, 召兰, , 等. 渤海油田砂岩储层岩石力学参数预测经验公式研究. 海洋石油, 2020, 40(2): 61- 66. 61-66, 95
大忠, , 磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现. 沉积学报, 2021, 39(1): 29- 45.
连浪, 利喜, 向君, 等. 基于BP神经网络的页岩静弹性模量预测研究. 科学技术与工程, 2016, 16(30): 176- 180. 176-180, 195
连浪, 向君, 利喜, 等. 巴什基奇克组地层岩石力学及地应力特征. 科学技术与工程, 2021, 21(10): 3894- 3903.
立春, 大忠, 文渊, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景. 石油勘探与开发, 2020, 47(3): 435- 446.
, 贵文, 卓颖, 等. 非常规油气储层脆性指数测井评价方法研究进展. 石油科学通报, 2016, 1(3): 330- 341.
, 彬森, 宏亮, 等. 人工智能在测井地层评价中的应用现状及前景. 石油学报, 2021, 42(4): 508- 522.
海宇, , , 等. 陆相页岩储层横观各向同性地应力测井预测——以新疆MH凹陷F组陆相页岩油储层为例. 天然气地球科学, 2022, 33(10): 1712- 1721.
小军, 利喜, , 等. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价. 石油与天然气地质, 2019, 40(3): 661- 668.
英伟, 林生, 建华, 等. 致密砾岩储层岩石力学参数及地应力测井评价方法研究. 测井技术, 2021, 45(6): 624- 629.
吴涛. 2015. 页岩气层岩石脆性影响因素及评价方法研究[硕士论文]. 成都: 西南石油大学.
成钢, 介辉, , 等. 地质力学在地质工程一体化中的应用. 中国石油勘探, 2017, 22(1): 75- 88.
, , 利喜, 等. 四川盆地龙马溪组页岩断裂韧性特征与预测方法. 地下空间与工程学报, 2019, 15(S2): 541- 547.
, 建军, 向君, 等. 海陆过渡相页岩力学特征及破坏模式——以鄂尔多斯盆地东缘二叠系山西组为例. 天然气地球科学, 2022, 33(7): 1144- 1154.
才能, , 连铸, 等. 中国页岩气开发进展、潜力及前景. 天然气工业, 2021, 41(1): 1- 14.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(11860 KB)

Accesses

Citation

Detail

Sections
Recommended

/