Magnetic fabrics and tectonic implications of Cambrian in the northern South China

QingShan LI, Jie ZHAO, YouXin CHEN, ChengJun LIU, Lei PEI, ZuoChen LI, XianZhi PEI, Mao WANG, Shang JI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 1919-1933.

PDF(12126 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(12126 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 1919-1933. DOI: 10.6038/pg2025II0457

Magnetic fabrics and tectonic implications of Cambrian in the northern South China

Author information +
History +

Abstract

The spatial and temporal distribution of the palaeomagnetic data of the South China Block is uneven, which limits our understanding of the paleogeography position of the South China Block in the Early Paleozoic. To search for suitable strata for systematic study of paleomagnetism, this study carries out a combined study including petrography, rock magnetism, and magnetic fabric on the mudstone-siltstone of the Cambrian strata from the Zhenba area in the northwestern edge of the South China. The results show that the magnetic minerals of the strata are mainly composed of titanium-bearing hematite or magnetite and magnetic pyrite, while the magnetic fabric is characterized by depositional-weakly deformed magnetic fabric. It is concluded that most of the Cambrian strata in this area have not been tensely modified by tectonic activities, and it is expected to retain the primary magnetic component acquired during deposits, which makes it possible to obtain reliable paleomagnetic data.

Key words

The northern margin of the South China Block / Cambrian / Magnetic fabrics / Rock magnetism / Paleocurrent / Tectonic deformation

Cite this article

Download Citations
QingShan LI , Jie ZHAO , YouXin CHEN , et al . Magnetic fabrics and tectonic implications of Cambrian in the northern South China[J]. Progress in Geophysics. 2025, 40(5): 1919-1933 https://doi.org/10.6038/pg2025II0457

References

Almqvist B S G, Koyi H. Bulk strain in orogenic wedges based on insights from magnetic fabrics in sandbox models. Geology, 2018, 46(6): 483- 486.
Anastasio D J, Pazzaglia F J, Parés J M, et al. Application of anisotropy of magnetic susceptibility (AMS) fabrics to determine the kinematics of active tectonics: examples from the Betic Cordillera, Spain, and the Northern Apennines, Italy. Solid Earth, 2021, 12(5): 1125- 1142.
Ao H, Deng C L. Review in the identification of magnetic minerals. Progress in Geophysics, 2007, 22(2): 432- 442.
Bai L X, Zhu R X, Wu H N, et al. New Cambrian paleomagnetic pole for Yangtze Block. Science in China Series D: Earth Sciences, 1998a, 41(S2): 66- 71.
Bai L X, Zhu R X, Wu H N, et al. Remagnetization history of Middle Triassic Leikoupo Formation on Wangcang section in Sichuan Province, China. Science in China Series D: Earth Sciences, 1998b, 41(S2): 72- 77.
Bhathal R S. Magnetic anisotropy in rocks. Earth-Science Reviews, 1971, 7(4): 227- 253.
Borradaile G J, Henry B. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 1997, 42(1-2): 49- 93.
Cao X W, Sun Z M, Huang B C, et al. Magnetic fabric separation and analysis of rock tectonic deformation. Chinese Journal of Geophysics, 2022, 65(2): 448- 470.
Chadima M, Hrouda F, Melichar R. Magnetic fabric study of the SE Rhenohercynian Zone (Bohemian Massif): Implications for dynamics of the Paleozoic accretionary wedge. Tectonophysics, 2006, 418(1-2): 93- 109.
Chadima M, Jelínek V. Anisoft 4.2: Anisotropy data browser. Contributions to Geophysics & Geodesy, 2008, 38: 41
Chen Y L, Chu X L, Zhang X L, et al. Carbon isotopes, sulfur isotopes, and trace elements of the dolomites from the Dengying Formation in Zhenba area, Southern Shaanxi: Implications for shallow water redox conditions during the terminal Ediacaran. Science in China Earth Sciences, 2015, 58(7): 1107- 1122.
Cheng W Q, Yang K G. Structural evolution of Dabashan Mountain: Evidence from ESR dating. Earth Science Frontiers, 2009, 16(3): 197- 206.
Cogné J P, Bonhommet N, Kropacek V, et al. Paleomagnetism and magnetic fabric of the deformed redbeds of the Cap de la Chèvre formation, Brittany, France. Physics of the Earth and Planetary Interiors, 1991, 67(3-4): 374- 388.
Dallanave E, Kirscher U. Testing the reliability of sedimentary paleomagnetic datasets for paleogeographic reconstructions. Frontiers in Earth Science, 2020, 8: 592277
Dong Y P, Cha X F, Fu M Q, et al. Characteristics of the Dabashan fold-thrust nappe structure at the southern margin of the Qinling, China. Geological Bulletin of China, 2008, 27(9): 1493- 1508.
Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 2011, 41(3): 213- 237.
Fu Q, Yan M D, Dekkers M J, et al. Inverse magnetic fabric of remagnetized limestones in the Zaduo area, Eastern Qiangtang Terrane: Implications for oroclinal bending in the Eastern Himalayan Syntaxis. Tectonophysics, 2024, 871: 230175
Gao L, Tong Y B, Wang H, et al. Magnetic fabric study of the Paleocene Ninglang Formation in the Chuandian Fragment and its tectonic implications. Chinese Journal of Geophysics, 2014, 57(1): 199- 213.
Graham J W. 1996. Significance of magnetic anisotropy in appalachian sedimentary rocks. //Steinhart J S, Smith T J eds. The Earth Beneath the Continents: A Volume of Geophysical Studies in Honor of Merle A. Tuve. Washington: American Geophysical Union, 627-648.
Heslop D, McIntosh G, Dekkers M J. Using time-and temperature-dependent Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophysical Journal International, 2004, 157(1): 55- 63.
Hrouda F. The magnetic fabric in some folds. Physics of the Earth and Planetary Interiors, 1978, 17(2): 89- 97.
Hrouda F. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 1982, 5(1): 37- 82.
Hrouda F, Jelínek V. Resolution of ferrimagnetic and paramagnetic anisotropies in rocks, using combined low-field and high-field measurements. Geophysical Journal International, 1990, 103(1): 75- 84.
Huang B C, Piper J D A, He H Y, et al. Paleomagnetic and geochronological study of the Halaqiaola basalts, southern margin of the Altai Mountains, northern Xinjiang: Constraints on neotectonic convergent patterns north of Tibet. Journal of Geophysical Research: Solid Earth, 2006, 111(B1): B01101
Huang B C, Yan Y G, Piper J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times. Earth-Science Reviews, 2018, 186: 8- 36.
Huang B C, Piper J D A, Sun L S, et al. New paleomagnetic results for Ordovician and Silurian rocks of the Tarim Block, Northwest China and their paleogeographic implications. Tectonophysics, 2019, 755: 91- 108.
Huang K N, Opdyke N D. Severe remagnetization revealed from Triassic platform carbonates near Guiyang, Southwest China. Earth and Planetary Science Letters, 1996, 143(1-4): 49- 61.
Huo F F, Shao R Q, Jiang N, et al. Anisotropy of magnetic susceptibility of Mesozoic and Cenozoic sediments in the northern margin of Qaidam Basin and its sedimentary-tectonic significance. Chinese Journal of Geophysics, 2020, 63(2): 583- 596.
Jelinek V. Characterization of the magnetic fabric of rocks. Tectonophysics, 1981, 79(3-4): T63- T67.
Jia D, Chen Z X, Luo L, et al. Magnetic fabrication and finite strain of fault-related folds: An example analysis of the Minjiang thrust structure in western Sichuan. Progress in Natural Science, 2007, 17(2): 188- 195.
Jiang K, Wu G Z, Si G H, et al. Anisotropy of magnetic susceptibility of the Late Cretaceous-Eocene sediments in the southeastern Fenwei Graben and its tectono-sedimentary significance. Geosci. J., 2023, 27(4): 491- 513.
Jiang Z X, Shen Z S, Qin H F, et al. Magnetic fabrics of the Hutouliang fluvio-lacustrine sequence and its implication for sedimentary evolution in Nihewan Basin. Quaternary Sciences, 2017, 37(6): 1320- 1333.
Jiao W J, Li Y X, Yang Z Y, et al. A widespread Early Mesozoic remagnetization in South China. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 88- 103.
Jiao W J. 2019. A Late Cambrian true polar wander and widespread Early Mesozoic remagnetization in South China: Paleomagnetic evidence from the Cambrian marine strata in South China[Ph. D. thesis](in Chinese). Nanjing: Nanjing University.
Jin J Y, Pei X Z, Pei L, et al. Detrital zircon U-Pb age and provenance tracing of Nanhua System in Zhenba-Chuanxindian area, northern margin of Yangtze Block. Mineral Exploration, 2024, 15(3): 321- 352.
Kapawar M R, Mamilla V, Sangode S J. Anisotropy of magnetic susceptibility study to locate the feeder zone and lava flow directions of the Rajmahal Traps (India): Implications to Kerguelen mantle plume interaction with Indian Plate. Physics of the Earth and Planetary Interiors, 2021, 313: 106692
Kong Y F, Sun L, Shen Z S, et al. Anisotropy of magnetic susceptibility of the Neogene Guonigou section in the Linxia Basin and its paleoenvironmental significance. Chinese Journal of Geophysics, 2018, 61(11): 4518- 4529.
Kruiver P P, Dekkers M J, Heslop D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth and Planetary Science Letters, 2001, 189(3-4): 269- 276.
Kuang M Z, Li Y F, Fan T L, et al. Application of high-precision sequence stratigraphy in marine fine-grained sedimentary rocks: A case study of the Doushantuo Formation in northern Sichuan. Earth Science Frontiers, 2023, 30(4): 164- 181.
Lan Z W. Research progress on the chronostratigraphic study of Nanhua System in South China. Sedimentary Geology and Tethyan Geology, 2023, 43(1): 180- 187.
Larrasoaña J C, Pueyo E L, Parés J M. An integrated AMS, structural, palaeo-and rock-magnetic study of Eocene marine marls from the Jaca-Pamplona basin (Pyrenees, N Spain); new insights into the timing of magnetic fabric acquisition in weakly deformed mudrocks. Geological Society, London, Special Publications, 2004, 238: 127- 143.
Li R B. 2010. The regional tectonic characteristic and their evolution of Zhenba-Chengkou, Southern Dabashan[Master's thesis](in Chinese). Xi'an: Chang'an University.
Li S H, van Hinsbergen D J J, Shen Z S, et al. Anisotropy of Magnetic Susceptibility (AMS) analysis of the Gonjo Basin as an independent constraint to date Tibetan shortening pulses. Geophysical Research Letters, 2020, 47(8): e2020GL087531
Li T, Cheng X, Zhou Y N, et al. Paleomagnetic study on the Early Devonian Pingshagou Formation limestone from the the North Qiangtang Terrane in the Qinghai-Xizang Plateau. Progress in Geophysics, 2024, 39(1): 10- 25.
Li X S. 2001. Paleomagnetic study of the upper Devonian and the Lower Carboniferous carbonates near Jiangyou, Sichuan, South China Block[Ph. D. thesis](in Chinese). Xi'an: Northwest University.
Li Z W, Liu S G, Luo Y H, et al. Structural style and deformational mechanism of southern Dabashan foreland fold-thrust belt in central China. Geotectonica et Metallogenia, 2006, 30(3): 294- 304.
Liu C Y, Li S H, Deng C L, et al. On the mechanism of remagnetization of Ordovician carbonates from the Yangtze Block, southwestern China. Chinese Journal of Geophysics, 2013, 56(2): 579- 591.
Liu Q S, Deng C L. Magnetic susceptibility and its environmental significances. Chinese Journal of Geophysics, 2009, 52(4): 1041- 1048.
Liu Z Q, Pei X Z, Ding S P, et al. Geological structure analysis of Zhenba-Xiagaochuan area in the northwest section of southern Dabashan. Journal of Earth Sciences and Environment, 2011, 33(1): 54- 63.
Lowrie W, Hirt A M, Kligfield R. Effects of tectonic deformation on the remanent magnetization of rocks. Tectonics, 1986, 5(5): 713- 722.
Lu R K, Zhang G W, Zhong H M, et al. Characteristics of magnetic fabrics in western segment of the Altun fault belt and its tectonic significance. Chinese Journal of Geophysics, 2008, 51(3): 752- 761.
Luo L, Jia D, Li Y Q, et al. Magnetic fabric of weak deformed sediments under the tectonic superposition: A case of the northwest Sichuan Basin. Acta Geologica Sinica, 2008, 82(6): 850- 856.
Luo L, Jia D, Li H B, et al. Magnetic fabric investigation in the northwestern Sichuan Basin and its regional inference. Physics of the Earth and Planetary Interiors, 2009, 173(1-2): 103- 114.
Luo L, Qi J F, Jia D, et al. Magnetic fabric investigation in Tianquan-Leshan section in front of Longmenshan fold-thrust belt and its indicative significance for the Cenozoic deformation. Chinese Journal of Geophysics, 2013, 56(2): 558- 566.
Ma S J, Pei X Z, Pei L, et al. Provenance analysis of the Nanhua System in the Zhenba Xiaoyangba area, southern Shaanxi: Evidence from detrital zircon U-Pb ages, clastic composition analysis and geochemistry. Mineral Exploration, 2024, 15(2): 165- 189.
McCarthy D J, Meere P A, Petronis M S. A comparison of the effectiveness of clast based finite strain analysis techniques to AMS in sandstones from the Sevier Thrust Belt, Wyoming. Tectonophysics, 2015, 639: 68- 81.
Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 2000, 323(3-4): 183- 196.
Pei X Z, Li R B, Ding S P, et al. Tectonic intersection relationship between Dabashan and Micangshan in Zhenba area, southern Shaanxi Province. Oil & Gas Geology, 2009, 30(5): 576- 583.
Qiao Q Q, Xiao W J, Huang B C, et al. Paleomagnetic constraints on neotectonic deformation within the Southern Tian Shan piedmont and implications for the latest Miocene enhanced aridification in the Tarim Basin. Global and Planetary Change, 2023, 227: 104164
Rochette P. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology, 1987, 9(8): 1015- 1020.
Rochette P, Jackson M, Aubourg C. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Reviews of Geophysics, 1992, 30(3): 209- 226.
Shao R Q, Yang X F, Zhou Y N, et al. Study on the magnetic properties of the basalt in Keping area, Early Permian Tarim Large Igneous Province. Progress in Geophysics, 2019, 34(6): 2180- 2187.
Stamatakos J, Kodama K P. The effects of grain-scale deformation on the Bloomsburg Formation Pole. Journal of Geophysical Research: Solid Earth, 1991, 96(B11): 17919- 17933.
Tarling D H, Hrouda F. The Magnetic Anisotropy of Rocks. London: Champan and Hall, 1993
Wang F. 2009. The stratigrapy divede and area contrast about Nanhua system and Zhendan system of Zhenba, Southern Shanxi[Master's thesis] (in Chinese). Xi'an: Chang'an University.
Wang K, Jia D, Luo L, et al. Magnetic fabric and structural deformation. Chinese Journal of Geophysics, 2017, 60(3): 1007- 1026.
Wang S W, Zan J B, Heller F, et al. Dynamic coupling between intensified physical erosion and Asian dust activity under Late Cenozoic Global Cooling. Geophysical Research Letters, 2024, 51(21): e2024GL110717
Wang Z M, Van Der Voo R. Pervasive remagnetization of paleozoic rocks acquired at the time of Mesozoic folding in the South China Block. Journal of Geophysical Research: Solid Earth, 1993, 98(B2): 1729- 1741.
Winkler A, Alfonsi L, Florindo F, et al. The magnetic anisotropy of rocks: Principles, techniques and geodynamic applications in the Italian peninsula. Annals of Geophysics, 1997, 40(3): 729- 740.
Wu H N, Chang C F, Liu C, et al. Evolution of the Qinling fold belt and the movement of the north and south china blocks: the evidence of geology and paleomagnetism. Scientia Geologica Sinica, 1990,(3): 201- 214.
Wu H N, Zhu R X, Bai L X, et al. Revised apparent polar wander path of the Yangtze Block and its tectonic implications. Science in China Series D: Earth Sciences, 1998, 41(S2): 78- 90.
Wu L, Kravchinsky V A, Potter D K. Apparent polar wander paths of the major Chinese blocks since the Late Paleozoic: Toward restoring the amalgamation history of east Eurasia. Earth-Science Reviews, 2017, 171: 492- 519.
Xie J Q, Zhang G W, Guo X F, et al. Magnetic fabrics in Jingzhuba-Shiwo section of foreland fold belt of the South Dabashan: Constraints on its tectonic evolution. Chinese Journal of Geophysics, 2014, 57(4): 1141- 1154.
Xing L Y, Wu H N, Zhou Y N, et al. Magnetic characteristics of rocks and geological significance in the Middle Permian Luobadui Formation, Lhasa block. Progress in Geophysics, 2023, 38(4): 1517- 1530.
Yan Y G, Chen L W, Huang B C, et al. Magnetic fabric constraint on tectonic setting of Paleoproterozoic dyke swarms in the North China Craton, China. Precambrian Research, 2019, 329: 247- 261.
Yang A H, Zhu M Y, Zhang J M, et al. Sequence stratigraphic subdivision and correlation of the Ediacaran (Sinian) Doushantuo Formation of Yangtze Plate, South China. Journal of Palaeogeography, 2015, 17(1): 1- 20.
Yang Z Y, Sun Z M, Yang T S, et al. A long connection (750-380 Ma) between South China and Australia: paleomagnetic constraints. Earth and Planetary Science Letters, 2004, 220(3-4): 423- 434.
Zhang G L. 2004. Kinematics and dynamics of pre-devonian teetonic evolution at south margin of Yangtze Bloek in North Guangxi[Ph. D. thesis] (in Chinese). Changsha: Central South University.
Zhang G W, Guo A L, Dong Y P, et al. Rethinking of the Qinling Orogen. Journal of Geomechanics, 2019, 25(5): 746- 768.
Zhang S H, Zhu H, Meng X H. New paleomagnetic results from the Devonian-Carboniferous successions in the southern Yangtze Block and their paleogeographic implications. Acta Geologica Sinica, 2001, 75(3): 303- 313.
Zhang Y F, Li C A, Chen L, et al. Magnetic fabric characters of sand-dune sediments and its paleowind field in the middle reaches of Yangtze River. Chinese Journal of Geophysics, 2009, 52(1): 150- 156.
Zhang Y J. 2012. The study of microfossils in the Lower Cambrian from the Southern Shaanxi Province and Northern Sichuan Province[Ph. D. thesis] (in Chinese). Xi'an: Chang'an University.
Zhang Z L, Shen Z Y, Wang X, et al. Characteristics of magnetic fabrics and paleocurrent directions of Cenozoic sediments in the Kelasu River, Kuqa Depression. Chinese Journal of Geophysics, 2013, 56(2): 567- 578.
Zhang Z Y. Superposed buckle folding at the upper structural levels in western Dabashan: example from the Jianchi area in Zhenba County. Earth Science Frontiers, 2019, 26(2): 1- 15.
Zhao J, Dong Y P, Huang B C. Paleomagnetic constraints of the Lower Triassic Strata in South Qinling Belt: Evidence for a discrete terrane between the North and South China Blocks. Tectonics, 2020, 39(3): e2019TC005698
Zhao Q, Yang K F, Wu H T. Magnetic fabric and stress analysis of the fore-land stratigraphy in the Longmen Mountains, Western Sichuan Province. Ground Water, 2016, 38(4): 247- 249.
Zhou Z Y, Meng J, Li Y L, et al. Magnetic fabric and sedimentological constraints on the paleocurrent changes within the early devonian strata from the northwestern Tarim, China. Journal of Asian Earth Sciences, 2024, 259: 105872
Zhu R X, Yang Z Y, Wu H N, et al. Paleomagnetic apparent polar wander path and tectonic movements of major Chinese terranes during the Phanerozoic. Science in China Series D: Earth Sciences, 1998, 28(S1): 1- 16.
, 成龙. 磁性矿物的磁学鉴别方法回顾. 地球物理学进展, 2007, 22(2): 432- 442.
立新, 汉宁, 日祥, 等. 扬子地块中寒武世古地磁新结果. 中国科学(D辑: 地球科学), 1998a, 28(S1): 57- 62.
立新, 日祥, 汉宁, 等. 四川旺苍地区中三叠世雷口坡组重磁化机理初步研究. 中国科学(D辑: 地球科学), 1998b, 28(S1): 63- 68.
新文, 知明, 宝春, 等. 磁组构的分离与岩石构造变形分析. 地球物理学报, 2022, 65(2): 448- 470.
陈高潮, 张俊良, 王炬川, 等. 2008. 1∶25万南江市幅、安康市幅区域地质调查. 西安: 陕西省地矿局地质调查院.
雅丽, 雪蕾, 兴亮, 等. 陕南镇巴地区灯影组白云岩的碳、硫同位素和微量元素指示: 埃迪卡拉纪末期浅海的氧化还原环境. 中国科学: 地球科学, 2015, 45(7): 963- 981.
万强, 坤光. 大巴山构造演化的石英ESR年代学研究. 地学前缘, 2009, 16(3): 197- 206.
云鹏, 显峰, 明庆, 等. 秦岭南缘大巴山褶皱-冲断推覆构造的特征. 地质通报, 2008, 27(9): 1493- 1508.
, 亚博, , 等. 川滇地块古新统宁蒗组磁组构特征及构造意义. 地球物理学报, 2014, 57(1): 199- 213.
斐斐, 瑞琦, , 等. 柴达木盆地北缘中新生代地层的磁组构特征及其沉积-构造学意义. 地球物理学报, 2020, 63(2): 583- 596.
, 竹新, , 等. 断层相关褶皱的磁组构与有限应变: 川西岷江冲断构造的实例分析. 自然科学进展, 2007, 17(2): 188- 195.
重昕, 中山, 华峰, 等. 泥河湾盆地虎头梁剖面河湖相沉积物磁组构特征及其环境意义. 第四纪研究, 2017, 37(6): 1320- 1333.
焦文军. 2019. 晚寒武世的真极移和华南早中生代的重磁化: 来自华南寒武系的古地磁证据[博士论文]. 南京: 南京大学.
姜颖, 先治, , 等. 扬子地块北缘镇巴穿心店地区南华系碎屑锆石U-Pb年龄及其物源示踪. 矿产勘查, 2024, 15(3): 321- 352.
艳芬, , 中山, 等. 临夏盆地新近纪郭泥沟剖面磁组构特征及其环境意义. 地球物理学报, 2018, 61(11): 4518- 4529.
明志, 一凡, 太亮, 等. 高精度层序地层学在海相细粒沉积岩中的应用: 以川北陡山沱组为例. 地学前缘, 2023, 30(4): 164- 181.
中伍. 华南南华系年代地层学研究进展. 沉积与特提斯地质, 2023, 43(1): 180- 187.
李瑞保. 2010. 南大巴山镇巴—城口段构造变形特征及构造演化[硕士论文]. 西安: 长安大学.
, , 亚楠, 等. 青藏高原北羌塘地块下泥盆统平沙沟组古地磁学研究. 地球物理学进展, 2024, 39(1): 10- 25.
李学森. 2001. 扬子地块四川江油地区上泥盆统-下石炭统古地磁研究[博士论文]. 西安: 西北大学.
智武, 树根, 玉宏, 等. 南大巴山前陆冲断带构造样式及变形机制分析. 大地构造与成矿学, 2006, 30(3): 294- 304.
成英, 仕虎, 成龙, 等. 扬子地块奥陶系碳酸盐岩重磁化机制探讨. 地球物理学报, 2013, 56(2): 579- 591.
青松, 成龙. 磁化率及其环境意义. 地球物理学报, 2009, 52(4): 1041- 1048.
战庆, 先治, 仨平, 等. 南大巴山西北段镇巴—下高川地区地质构造解析. 地球科学与环境学报, 2011, 33(1): 54- 63.
如魁, 国伟, 华明, 等. 阿尔金断裂带西段磁组构特征及其构造意义. 地球物理学报, 2008, 51(3): 752- 761.
, , 一泉, 等. 构造叠加弱应变沉积岩地区的磁组构研究——以川西北盆地为例. 地质学报, 2008, 82(6): 850- 856.
, 家福, , 等. 龙门山南段山前天全—乐山剖面磁组构研究及其对新生代构造变形的指示意义. 地球物理学报, 2013, 56(2): 558- 566.
圣杰, 先治, , 等. 陕南镇巴小洋坝地区南华系物源分析: 来自碎屑锆石U-Pb年龄、碎屑成分分析及地球化学的证据. 矿产勘查, 2024, 15(2): 165- 189.
先治, 瑞保, 仨平, 等. 陕南镇巴地区大巴山与米仓山构造交接关系. 石油与天然气地质, 2009, 30(5): 576- 583.
瑞琦, 兴峰, 亚楠, 等. 塔里木大火成岩省柯坪地区早二叠世玄武岩岩石磁学性质研究. 地球物理学进展, 2019, 34(6): 2180- 2187.
王飞. 2009. 陕南镇巴地区南华系-震旦系岩石地层划分与区域对比[硕士论文]. 西安: 长安大学.
, , , 等. 磁组构与构造变形. 地球物理学报, 2017, 60(3): 1007- 1026.
汉宁, 承法, 椿, 等. 依据古地磁资料探讨华北和华南块体运动及其对秦岭造山带构造演化的影响. 地质科学, 1990,(3): 201- 214.
汉宁, 日祥, 立新, 等. 扬子地块显生宙古地磁视极移曲线及地块运动特征. 中国科学(D辑: 地球科学), 1998, 28(S1): 69- 78.
晋强, 国伟, 秀峰, 等. 南大巴山前陆褶皱带荆竹坝—石窝剖面磁组构特征及其对构造演化的制约. 地球物理学报, 2014, 57(4): 1141- 1154.
龙云, 汉宁, 亚楠, 等. 拉萨地块中二叠统洛巴堆组岩石磁学及其地质意义. 地球物理学进展, 2023, 38(4): 1517- 1530.
爱华, 茂炎, 俊明, 等. 扬子板块埃迪卡拉系(震旦系)陡山沱组层序地层划分与对比. 古地理学报, 2015, 17(1): 1- 20.
张桂林. 2004. 扬子陆块南缘(桂北地区)前泥盆纪构造演化的运动学和动力学研究[博士论文]. 长沙: 中南大学.
国伟, 安林, 云鹏, 等. 关于秦岭造山带. 地质力学学报, 2019, 25(5): 746- 768.
世红, 鸿, 小红. 扬子地块泥盆纪-石炭纪古地磁新结果及其古地理意义. 地质学报, 2001, 75(3): 303- 313.
张拴厚, 韩芳林, 王根宝, 等. 2013. 陕西省区域地质志上中下册. 全国地质资料馆.
玉芬, 长安, , 等. 长江中游砂山沉积物磁组构特征及其指示的古风场. 地球物理学报, 2009, 52(1): 150- 156.
志亮, 忠悦, , 等. 库车坳陷克拉苏河新生代沉积岩磁组构特征与古流向分析. 地球物理学报, 2013, 56(2): 567- 578.
忠义. 大巴山西北缘浅层次叠加褶皱变形分析: 以镇巴县简池地区为例. 地学前缘, 2019, 26(2): 1- 15.
, 凯峰, 鸿天. 川西地区龙门山前陆地层磁组构与应力研究. 地下水, 2016, 38(4): 247- 249.
郑亚娟. 2012. 陕南川北地区下寒武统下部微体化石研究[博士论文]. 西安: 长安大学.
日祥, 振宇, 汉宁, 等. 中国主要地块显生宙古地磁视极移曲线与地块运动. 中国科学(D辑: 地球科学), 1998, 28(S1): 1- 16.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(12126 KB)

Accesses

Citation

Detail

Sections
Recommended

/