Shearing wave velocity prediction by deep learning for coal-rich sand and mud interbedded formations in the Xihu Sag of the East China Sea

YongXin GUO, Jian LI, DeWen QIN, JiQiang MA, ShuLiang WU, JianHua GENG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2148-2159.

PDF(8857 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8857 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2148-2159. DOI: 10.6038/pg2025II0469

Shearing wave velocity prediction by deep learning for coal-rich sand and mud interbedded formations in the Xihu Sag of the East China Sea

Author information +
History +

Abstract

Shearing wave velocity is a crucial parameter for lithology prediction and fluid identification, playing a significant role in elastic parameter inversion and detailed reservoir characterization. However, due to constraints in exploration costs, direct shearing wave velocity measurements through well-logging are relatively rare and are typically estimated using empirical formulas or rock physics models. The hydrocarbon reservoirs in the Xihu Sag of the East China Sea are characterized by thinly interbedded sand-mud layers with abundant coal seams. The complex mineral composition and pore structure, along with rapid vertical variations in lithology and petrophysical properties, make it challenging to achieve high-accuracy shearing wave velocity predictions using empirical formulas or rock physics models, which often rely on simplified assumptions that fail to capture the complexity of the subsurface. Deep learning, with its powerful nonlinear representation and feature extraction capabilities, can effectively learn the intricate relationships between logging parameters and shearing wave velocity. In this study, a feedforward deep learning artificial neural network is employed to predict shearing wave velocity. Six logging parameters including reservoir depth, P-wave velocity, density, natural gamma, shale content, and porosity are used as input features to construct the deep learning neural model. A multi-layer network is designed to establish a complex nonlinear mapping between these parameters and shearing wave velocity, and an appropriate optimization strategy is implemented for artificial neural model training. This study focuses on shearing velocity prediction in the Xihu Sag of the East China Sea, where the reservoir is characterized by interbedded sandstone and mudstone with thin coal seams. The complex structural features and rapid vertical lithological variations present significant challenges for accurate shearing wave velocity estimation. Training and testing with actual well log data demonstrate that the feedforward deep learning neural network enables high-precision shearing wave velocity prediction for the complex thinly interbedded sand-mud reservoirs with coal enrichment in this region.

Key words

Xihu Sag / Coal-rich formation / Sand-mud thin interbed / Deep learning / Shearing wave velocity prediction

Cite this article

Download Citations
YongXin GUO , Jian LI , DeWen QIN , et al . Shearing wave velocity prediction by deep learning for coal-rich sand and mud interbedded formations in the Xihu Sag of the East China Sea[J]. Progress in Geophysics. 2025, 40(5): 2148-2159 https://doi.org/10.6038/pg2025II0469

References

Avseth P, Mukerji T, Mavko G. Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge: Cambridge University Press., 2005
Berryman J G. Long-wavelength propagation in composite elastic media Ⅰ. Spherical inclusions. The Journal of the Acoustical Society of America, 1980, 68(6): 1809- 1819.
Berryman J G. Single-scattering approximations for coefficients in Biot's equations of poroelasticity. The Journal of the Acoustical Society of America, 1992, 91(2): 551- 571.
Castagna J P, Batzle M L, Eastwood R L. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 1985, 50(4): 571- 581.
Chen W, Yang L Q, Zha B, et al. Deep learning reservoir porosity prediction based on multilayer long short-term memory network. Geophysics, 2020, 85(4): WA213- WA225.
Chen Z Y, Du X B, Li S. Distributional signatures of depositional system of Pinghu Formation, Pinghu slope, Xihu Sag, East China Sea Shelf Basin. Petroleum Geology & Experiment, 2022, 44(5): 780- 789.
Das V, Pollack A, Wollner U, et al. Convolutional neural network for seismic impedance inversion. Geophysics, 2019, 84(6): R869- R880.
Das V, Mukerji T. Petrophysical properties prediction from prestack seismic data using convolutional neural networks. Geophysics, 2020, 85(5): N41- N55.
Dvorkin J, Nur A, Yin H Z. Effective properties of cemented granular materials. Mechanics of Materials, 1994, 18(4): 351- 366.
Dvorkin J, Nur A. Elasticity of high-porosity sandstones: Theory for two North Sea data sets. Geophysics, 1996, 61(5): 1363- 1370.
Dvorkin J, Prasad M, Sakai A, et al. Elasticity of marine sediments: Rock physics modeling. Geophysical Research Letters, 1999, 26(12): 1781- 1784.
Han D H, Nur A, Morgan D. Effects of porosity and clay content on wave velocities in sandstones. Geophysics, 1986, 51(11): 2093- 2107.
Hertz H. On the contact of elastic solids. Journal of Pure and Applied Mathematics, 1882, 92: 156- 171.
Kuster G T, Toksöz M N. Velocity and attenuation of seismic waves in two-phase media: Part Ⅰ. Theoretical formulations. Geophysics, 1974, 39(5): 587- 606.
Lee M W. A simple method of predicting S-wave velocity. Geophysics, 2006, 71(6): F161- F164.
Li L, Ma J F, Wang H F, et al. Study of 4D seismic forward model for CO2 sequestration in typical reservoir. Progress in Geophysics, 2018, 33(6): 2383- 2393.
Li Q Z. Velocity regularities of P and S-waves in formations. Oil Geophysical Prospecting, 1992, 27(1): 1- 12.
Liu J Y, Zhao L X, Xu M H, et al. Porosity prediction from prestack seismic data via deep learning: incorporating a low-frequency porosity model. Journal of Geophysics and Engineering, 2023, 20(5): 1016- 1029.
Liu L, Geng J H, Guo T L. The bound weighted average method (BWAM) for predicting S-wave velocity. Applied Geophysics, 2012, 9(4): 421- 428.
Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook. Cambridge: Cambridge University Press., 1998
Mindlin R D. Compliance of elastic bodies in contact. Journal of Applied Mechanics, 1949, 16(3): 259- 268.
Prechelt L. 1998. Early Stopping-but when?. //Neural Networks: Tricks of the Trade. Berlin, Heidelberg: Springer-Verlag, 55-69.
Pride S R, Berryman J G, Harris J M. Seismic attenuation due to wave-induced flow. Journal of Geophysical Research: Solid Earth, 2004, 109(B1): B01201
She B, Wang Y J, Liang J D, et al. A data-driven amplitude variation with offset inversion method via learned dictionaries and sparse representation. Geophysics, 2018, 83(6): R725- R748.
Sun S, Zhao L X, Chen H Z, et al. Prestack seismic inversion for elastic parameters using model-data-driven generative adversarial networks. Geophysics, 2023, 88(2): M87- M103.
Sun Y Z, Huang J. Application of multi-task deep learning in reservoir shear wave prediction. Progress in Geophysics, 2021, 36(2): 799- 809.
Tao S Z, Zou C N. Accumulation and distribution of natural gases in Xihu Sag, East China Sea Basin. Petroleum Exploration and Development, 2005, 32(4): 103- 110.
Tosaya C, Nur A. Effects of diagenesis and clays on compressional velocities in rocks. Geophysical Research Letters, 1982, 9(1): 5- 8.
Wang J, Cao J X, Zhao S, et al. S-wave velocity inversion and prediction using a deep hybrid neural network. Science China Earth Sciences, 2022, 65(4): 724- 741.
Wu S L, Wang Y Y, Li Q P, et al. Joint data-driven and physics-driven prestack amplitude-variation-with-angle elastic parameter inversion. Geophysics, 2024, 89(1): R17- R32.
Xu S Y, White R E. A new velocity model for clay-sand mixtures. Geophysical Prospecting, 1995, 43(1): 91- 118.
Xu S Y, Payne M A. Modeling elastic properties in carbonate rocks. The Leading Edge, 2009, 28(1): 66- 74.
Zhang J P, Xu F, Zhong T, et al. Sequence stratigraphic models and sedimentary evolution of Pinghu and Huagang Formations in Xihu Trough. Marine Geology & Quaternary Geology, 2012, 32(1): 35- 41.
Zhang L, Wang W J, He X K, et al. A new phase-controlled reservoir prediction technique for coal-rich environment in the Pinghu Formation of the Xihu Sag, the East China Sea. Geoscience, 2019, 33(2): 337- 344.
Zhou H, Wu Z Y, Zhang X, et al. Shear wave prediction method based on LSTM recurrent neural network. Fault-Block Oil & Gas Field, 2021, 28(6): 829- 834.
Zou C F, Zhao L X, Hong F, et al. A comparison of machine learning methods to predict porosity in carbonate reservoirs from seismic-derived elastic properties. Geophysics, 2023, 88(2): B101- B120.
忠云, 学斌, . 东海西湖凹陷平湖斜坡带平湖组沉积体系平面分区特征及差异性展布. 石油实验地质, 2022, 44(5): 780- 789.
, 劲风, 浩璠, 等. 典型油藏CO2地质封存中四维地震正演模型研究. 地球物理学进展, 2018, 33(6): 2383- 2393.
庆忠. 岩石的纵、横波速度规律. 石油地球物理勘探, 1992, 27(1): 1- 12.
永壮, . 多任务深度学习技术在储层横波速度预测中的应用. 地球物理学进展, 2021, 36(2): 799- 809.
士振, 才能. 东海盆地西湖凹陷天然气成藏及分布规律. 石油勘探与开发, 2005, 32(4): 103- 110.
, 俊兴, , 等. 基于深度混合神经网络的横波速度反演预测方法. 中国科学: 地球科学, 2022, 52(6): 1151- 1169.
建培, , , 等. 东海陆架盆地西湖凹陷平湖组-花港组层序地层模式及沉积演化. 海洋地质与第四纪地质, 2012, 32(1): 35- 41.
, 文基, 贤科, 等. 东海西湖凹陷平湖组富煤环境相控储层预测技术. 现代地质, 2019, 33(2): 337- 344.
, 中原, , 等. 基于LSTM循环神经网络的横波预测方法. 断块油气田, 2021, 28(6): 829- 834.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(8857 KB)

Accesses

Citation

Detail

Sections
Recommended

/