Root point recognition and wave velocity estimation of GPR images based on Yolov4 model

JinFeng SHI, Li GUO, LuYun ZHANG, XiHong CUI, FeiFei HOU, TianBao HUANG, Hang XU, XiangJie LI, Yun HU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2211-2226.

PDF(7043 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7043 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2211-2226. DOI: 10.6038/pg2025II0494

Root point recognition and wave velocity estimation of GPR images based on Yolov4 model

Author information +
History +

Abstract

Ground Penetrating Radar (GPR) has become a pivotal tool in plant root studies owing to its non-destructive nature and operational efficiency. However, rapid and precise identification of root's hyperbolic reflections and wave velocity estimation from GPR data remain constrained by challenges including noise interference, complex hyperbola morphologies, and limited field-measured datasets. To address these limitations, this study introduces Yolov4-HPV (Hyperbolic Position and Velocity), an enhanced deep learning model built upon the Yolov4 framework. The proposed methodology integrates a key-point detection algorithm that identifies five characteristic points of hyperbolic signatures, enabling supplementary wave velocity calculations with improved accuracy. To mitigate training data scarcity, a synthetic data generation framework was developed using gprMax forward simulation software. The framework employs two strategies: (1) a Merge protocol to streamline simulated image synthesis, and (2) a Multi-CycleGAN approach for style transfer, substantially augmenting dataset diversity and model generalizability. The results show that Yolov4-HPV's capability to detect hyperbolas and estimate wave velocities with high precision. The key-points method further improves the accuracy of wave velocity estimation. The key-points method further reduced RRMSE of wave velocity estimation to 3.43%, outperforming Yolov4-HPV's 4.76% for the testing datasets. In control experiments, the average absolute errors of root depth positioning were 4 cm and 3 cm, with average relative errors of 15% and 11%, respectively, confirming the model's high accuracy and robustness. This work advances GPR-based root investigation by enhancing automatic target identification and wave velocity quantification while optimizing computational cost, offering significant methodological improvements for ecological and hydrological applications.

Key words

Ground Penetrating Radar (GPR) / Plant root / Wave velocity estimation / Non-destructive detection / Deep-learning

Cite this article

Download Citations
JinFeng SHI , Li GUO , LuYun ZHANG , et al . Root point recognition and wave velocity estimation of GPR images based on Yolov4 model[J]. Progress in Geophysics. 2025, 40(5): 2211-2226 https://doi.org/10.6038/pg2025II0494

References

Alvarez J K, Kodagoda S. 2018. Application of deep learning image-to-image transformation networks to GPR radar grams for sub-surface imaging in infrastructure monitoring. //2018 13th IEEE Conference on Industrial Electronics and Applications. Wuhan, China: IEEE, 611-616, doi: 10.1109/ICIEA.2018.8397788.
Attia Al Hagrey S . Geophysical imaging of root-zone, trunk, and moisture heterogeneity. Journal of Experimental Botany, 2007, 58 (4): 839- 854.
Bardgett R D , Mommer L , De Vries F T . Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 2014, 29 (12): 692- 699.
Bochkovskiy A, Wang C Y, Liao H Y M. 2020. YOLOv4: Optimal speed and accuracy of object detection. arXiv: 2004.10934, doi: 10.48550/arXiv.2004.10934.
Buck P E . Ground-Penetrating Radar: An Introduction for Archaeologists. Lawrence B. Conyers and Dean Goodman. 1997. Altamira Press, Walnut Creek, CA. 232 pp., 58 figures, 15 color plates, 6 tables, references cited, index. $ 54.00 (cloth), $ 26.95 (paper). American Antiquity, 1999, 64 (1): 183- 184.
Cao Z, Simon T, Wei S E, et al. 2017. Realtime multi-person 2D pose estimation using part affinity fields. //Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 1302-1310.
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. 2014. Generative adversarial nets. //Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2672-2680.
Gregory P J , George T S , Paterson E . New methods for new questions about rhizosphere/plant root interactions. Plant and Soil, 2022, 476 (1): 699- 712.
Guo L , Cui X H , Chen J . Sensitive factors analysis in using GPR for detecting plant roots based on forward modeling. Progress in Geophysics (in Chinese), 2012, 27 (4): 1754- 1763.
Guo L , Chen J , Cui X H , et al. Application of ground penetrating radar for coarse root detection and quantification: A review. Plant and Soil, 2013, 362 (1): 1- 23.
Hao T , Zhao J . A brief review of the hyperbola signature recognition techniques for ground penetrating radar. Acta Electronica Sinica (in Chinese), 2019, 47 (6): 1366- 1372.
He K M , Zhang X Y , Ren S Q , et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916.
Hruska J , Cermak J , Sustek S . Mapping tree root systems with ground-penetrating radar. Tree Physiology, 1999, 19 (2): 125- 130.
Hu M J , Wu K , Tian Y L , et al. Progress in application of ground penetrating radar in root detection of plants. Henan Science and Technology (in Chinese), 2019, (5): 11- 15.
Lei W T , Luo J B , Hou F F , et al. Underground cylindrical objects detection and diameter identification in GPR B-Scans via the CNN-LSTM framework. Electronics, 2020, 9 (11): 1804
Leong Z X , Zhu T Y . Direct velocity inversion of ground penetrating radar data using GPRNet. Journal of Geophysical Research: Solid Earth, 2021, 126 (6): e2020JB021047
Li G H , Ma J H , Wang Z X , et al. Suppressing ground penetrating radar clutter to predict root parameters using deep neural networks. Transactions of the Chinese Society of Agricultural Engineering (in Chinese), 2023, 39 (16): 171- 180.
Li P Y , Wang H H , Wang Y C , et al. Analysis of GPR high-frequency electromagnetic wave propagation characteristic in dispersive media. Progress in Geophysics (in Chinese), 2023, 38 (5): 2276- 2287.
Li S , Zhang X W , Tan X , et al. Deep learning-based inverse identification of multi-target parameters for tree rooting ground-penetrating radar. Journal of Beijing Forestry University (in Chinese), 2024, 46 (4): 103- 114.
Li S P , Cui X H , Guo L , et al. Enhanced automatic root recognition and localization in GPR images through a YOLOv4-based deep learning approach. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114314
Li T J , Zhou Z O . Extraction of hyperbolic signatures and application for propagation velocity estimation in GPR. Chinese Journal of Radio Science (in Chinese), 2008, 23 (1): 124- 128.
Li W , Cui X , Guo L , et al. Tree root automatic recognition in ground penetrating radar profiles based on randomized hough transform. Remote Sensing, 2016, 8 (5): 430
Liu S, Qi L, Qin H F, et al. 2018. Path aggregation network for instance segmentation. //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 8759-8768.
Liu X , Chen J , Butnor J R , et al. Noninvasive 2D and 3D mapping of root zone soil moisture through the detection of coarse roots with ground penetrating radar. Water Resources Research, 2020, 56 (5): e2019WR026930
Mertens L , Persico R , Matera L , et al. Automated detection of reflection hyperbolas in complex GPR images with no A Priori knowledge on the medium. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (1): 580- 596.
Shao Y H , Zhang D , Chu H Y , et al. A review of YOLO object detection based on deep learning. Journal of Electronics & Information Technology (in Chinese), 2022, 44 (10): 3697- 3708.
Topp G C , Davis J L , Annan A P . Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 1980, 16 (3): 574- 582.
Wang D D , Xu Y M , Yue S P , et al. Plant root detection based on ground penetrating radar: A review. Journal of Nanjing University of Information Science and Technology (Natural Science Edition) (in Chinese), 2016, 8 (1): 46- 55.
Wang H T , Liu Q S , Chen L , et al. Improved CycleGAN network for underwater microscopic image color correction. Optics and Precision Engineering (in Chinese), 2022, 30 (12): 1499- 1508.
Wang Z P , Zhang X W , Xue F X , et al. Estimating the location and diameter of tree roots using ground penetrating radar. Transactions of the Chinese Society of Agricultural Engineering (in Chinese), 2021, 37 (8): 160- 168.
Zhang D , Mo Q M . Forward modeling of GPR image based on GprMax. Chinese Journal of Engineering Geophysics (in Chinese), 2022, 19 (2): 168- 182.
Zhang L Y , Cui X H , Quan Z X , et al. Availability of ground penetrating radar in recognizing plant roots in field. Progress in Geophysics (in Chinese), 2021, 36 (6): 2764- 2774.
Zhang X W , Xue F X , Wang Z P , et al. A novel method of hyperbola recognition in Ground Penetrating Radar (GPR) B-Scan image for tree roots detection. Forests, 2021, 12 (8): 1019
Zhu J Y, Park T, Isola P, et al. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. //2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2242-2251.
, 喜红 , . 基于GprMax正演模拟的探地雷达根系探测敏感因素分析. 地球物理学进展, 2012, 27 (4): 1754- 1763.
, . 面向双曲线形态的探地雷达图像识别技术综述. 电子学报, 2019, 47 (6): 1366- 1372.
梦蛟 , , 云露 , 等. 探地雷达在植物根系探测中的应用进展. 河南科技, 2019, (5): 11- 15.
光辉 , 嘉辉 , 哲旭 , 等. 基于深度神经网络的探地雷达杂波抑制和根参数预测方法. 农业工程学报, 2023, 39 (16): 171- 180.
鹏宇 , 洪华 , 欲成 , 等. 探地雷达高频电磁波在频散介质中的传播特征分析. 地球物理学进展, 2023, 38 (5): 2276- 2287.
, 潇巍 , , 等. 基于深度学习的树木根系探地雷达多目标参数反演识别. 北京林业大学学报, 2024, 46 (4): 103- 114.
廷军 , 正欧 . 探地雷达中双曲线的提取及在波速估计中的应用. 电波科学学报, 2008, 23 (1): 124- 128.
延华 , , 红雨 , 等. 基于深度学习的YOLO目标检测综述. 电子与信息学报, 2022, 44 (10): 3697- 3708.
丹丹 , 永明 , 书平 , 等. 基于探地雷达的植物根系探测研究进展. 南京信息工程大学学报(自然科学版), 2016, 8 (1): 46- 55.
昊天 , 庆省 , , 等. 改进的CycleGAN网络用于水下显微图像颜色校正. 光学精密工程, 2022, 30 (12): 1499- 1508.
泽鹏 , 潇巍 , 芳秀 , 等. 探地雷达树木根系定位与直径估算. 农业工程学报, 2021, 37 (8): 160- 168.
, 其妙 . 基于GprMax的地下管线探地雷达图像正演模拟. 工程地球物理学报, 2022, 19 (2): 168- 182.
璐云 , 喜红 , 振先 , 等. 野外自然条件下探地雷达识别植物根系的有效性研究. 地球物理学进展, 2021, 36 (6): 2764- 2774.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(7043 KB)

Accesses

Citation

Detail

Sections
Recommended

/