Research on simultaneous-source data deblending based on improved U-Net

YaJie WEI, YuJia ZHU, JingJie CAO, QiYan YANG, Qiang LIU

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1428-1439.

PDF(9095 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9095 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1428-1439. DOI: 10.6038/pg2025II0555

Research on simultaneous-source data deblending based on improved U-Net

Author information +
History +

Abstract

The simultaneous-source data acquisition technique allows seismic data to overlap with each other, and by exciting two or more sources simultaneously or delayed, it is possible to obtain several times more seismic data than conventional acquisition in the same time, which greatly improves the acquisition efficiency, but because the acquisition data are mixed with a large amount of confounding noise, it seriously affects the subsequent data processing and interpretation. This paper proposes a deblending method based on improved U-Net, which incorporates a dual channel attention mechanism into the original U-Net, focusing on the continuity of the reflection layer and waveform amplitude changes in seismic data, while enhancing the signal contrast in local areas and highlighting the reflection signals; The use of hybrid dilated convolution avoids partial information loss caused by pooling operations during down-sampling, ultimately achieving mixed data separation based on dual attention mechanism and hybrid dilated convolution U-Net (HDC AU-Net). The simulation data experiment results show that compared with the iterative sparse inversion method and the original U-Net method, the HDC AU-Net method has better removal effect on aliasing noise and higher separation signal-to-noise ratio. The actual data experiment further verified the reliability of the algorithm.

Key words

Simultaneous-source data deblending / Deep learning / U-Net network / Hybrid dilated convolution / Dual attention mechanism

Cite this article

Download Citations
YaJie WEI , YuJia ZHU , JingJie CAO , et al . Research on simultaneous-source data deblending based on improved U-Net[J]. Progress in Geophysics. 2025, 40(4): 1428-1439 https://doi.org/10.6038/pg2025II0555

References

Baardman R, Tsingas C. 2019. Classification and suppression of blending noise using convolutional neural networks. //SPE Middle East Oil and Gas Show and Conference. Manama, Bahrain: SPE.
Bagaini C, Daly M, Moore I. The acquisition and processing of dithered slip-sweep vibroseis data. Geophysical Prospecting, 2012, 60 (4): 618- 639.
Beasley C J, Dragoset B, Salama A. A 3D simultaneous source field test processed using alternating projections: a new active separation method. Geophysical Prospecting, 2012, 60 (4): 591- 601.
Cao J H, Kontakis A, Verschuur D J, et al. Deblending using the focal transformation with an efficient greedy inversion solver. Journal of Applied Geophysics, 2019, 170: 103791
Cao J J, Gao K F, Xu Y P, et al. Seismic data de-noising method based on an attention mechanism U-Net. Oil Geophysical Prospecting, 2024, 59 (4): 724- 735.
Chen X Y, Wang B F. Self-supervised multistep seismic data deblending. Surveys in Geophysics, 2024, 45 (2): 383- 407.
Gan S W, Wang S D, Chen Y K, et al. Separation of simultaneous sources using a structural-oriented median filter in the flattened dimension. Computers and Geosciences, 2016, 86: 46- 54.
Han L G, Tan C Q, Q T, et al. Separation of multi-source blended seismic acquisition data by iterative denoising. Chinese J. Geophys., 2013, 56 (7): 2402- 2412.
Huo S D, Luo Y, Kelamis P G. Simultaneous sources separation via multidirectional vector-median filtering. Geophysics, 2012, 77 (4): V123- V131.
Ke C F, Zu S H, Cao J X, et al. A hybrid WUDT-NAFnet for simultaneous source data deblending. Petroleum Science, 2024, 21 (3): 1649- 1659.
Kim Y, Gruzinov I, Guo M H, et al. 2009. Source separation of simultaneous source OBC data. //SEG Technical Program Expanded Abstracts. SEG, 51-55.
Mahdad A, Doulgeris P, Blacquiere G. Separation of blended data by iterative estimation and subtraction of blending interference noise. Geophysics, 2011, 76 (3): Q9- Q17.
Richardson A, Feller C. 2019. Seismic data denoising and deblending using deep learning. arXiv preprint arXiv: 1907.01497, doi: 10.48550/arXiv.1907.01497.
Ronneberger O, Fischer P, Brox T. 2015. U-Net: Convolutional networks for biomedical image segmentation. arXiv preprint arXiv: 1505.04597, doi: 10.48550/arXiv.1505.04597.
Sun J, Slang S, Elboth T, et al. A convolutional neural network approach to deblending seismic data. Geophysics, 2020, 85 (4): WA13- WA26.
Wang B F, Li J K, Han D. Iterative deblending using MultiResUNet with multilevel blending noise for training and transfer learning. Geophysics, 2022, 87 (3): V205- V214.
Wang K X, Hu T Y, Wang S X. Iterative deblending using unsupervised learning with double-deep neural networks. Geophysics, 2023, 88 (3): V187- V205.
Wang P Q, Chen P F, Yuan Y, et al. 2018. Understanding convolution for semantic segmentation. arXiv preprint arXiv: 1702.08502, doi: 10.48550/arXiv.1702.08502.
Wei Y J, Han L G, Shan G Y, et al. Separation of mixed source seismic data based on the impulse detection. Chinese J. Geophys., 2018, 61 (3): 1157- 1168.
Wei Y J, Zhang P, Xu Z. Separation of 3D blending seismic data based on sparse constrained inversion. Chinese J. Geophys, 2019, 62 (10): 4000- 4009.
Xue Y R, Man M X, Zu S H, et al. Amplitude-preserving iterative deblending of simultaneous source seismic data using high-order Radon transform. Journal of Applied Geophysics, 2017, 139: 79- 90.
Zhang H, Pang Y, Liang S, et al. Iterative deblending of off-the-grid simultaneous source data. IEEE Access, 2021, 9: 4923- 4938.
Zu S H, Cao J X, Qu S, et al. Iterative deblending for simultaneous source data using the deep neural network. Geophysics, 2020, 85 (2): V131- V141.
Zu S H, Ke C F, Hou C Z, et al. End-to-end deblending of simultaneous source data using transformer. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8027905
静杰, 康富, 银坡, 等. 基于一种注意力机制U-Net的地震数据去噪方法. 石油地球物理勘探, 2024, 59 (4): 724- 735.
立国, 尘青, 庆田, 等. 基于迭代去噪的多源地震混合采集数据分离. 地球物理学报, 2013, 56 (7): 2402- 2412.
亚杰, 立国, 刚义, 等. 基于脉冲检测的混合震源数据分离. 地球物理学报, 2018, 61 (3): 1157- 1168.
亚杰, , . 基于稀疏约束反演的三维混采数据分离. 地球物理学报, 2019, 62 (10): 4000- 4009.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(9095 KB)

Accesses

Citation

Detail

Sections
Recommended

/