Stochastic finite fault modeling of ground motions for the 2023 MS6.2 Jishishan earthquake based on improved source spectral model

Yu LIU, ShiYu JIN, MiaoMiao DENG, QianQi XU, XiaoDan SUN, ZiHan YIN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1405-1416.

PDF(9513 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9513 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1405-1416. DOI: 10.6038/pg2025JJ0016

Stochastic finite fault modeling of ground motions for the 2023 MS6.2 Jishishan earthquake based on improved source spectral model

Author information +
History +

Abstract

An MS6.2 earthquake struck Jishishan County, Gansu Province, China, on December 18, 2023, leading to a tremendous sand boil and causing more than 150 deaths. As the trigger of the sand boils, the ground shaking during the earthquake attracts extensive concerns. In this study, ground motions of the Jishishan earthquake were reproduced by using a stochastic finite-fault modeling approach and compared with observations. To maintain the far-field received energy independent of subfault size, two improvements were made to the source spectral model. The comparison shows that: Simulated ground motions agree well with observations in terms of the waveform, peak, and duration of the acceleration time histories at reported stations. The response spectra of the observed time series are in general well reproduced by the simulation except for the remarkably large amplitude at certain periods that may result from a site response. Both the simulated and observed PGA are higher than the predictions of the empirical model but remain close to +1 standard deviation. The contour map of the simulated PGA and PGV shows a similar pattern to the observation except for the slight underestimation near the northeast and northwest corners of the study area. The maximum intensity derived from the simulated PGA is degree Ⅺ, which is also consistent with the reported shaking intensity.

Key words

Jishishan earthquake / Stochastic finite fault modeling / Strong ground motion / Peak ground acceleration / Shaking intensity

Cite this article

Download Citations
Yu LIU , ShiYu JIN , MiaoMiao DENG , et al . Stochastic finite fault modeling of ground motions for the 2023 MS6.2 Jishishan earthquake based on improved source spectral model[J]. Progress in Geophysics. 2025, 40(4): 1405-1416 https://doi.org/10.6038/pg2025JJ0016

References

Atkinson. Earthquake Source Spectra in Eastern North America. Bulletin of the Seismological Society ofAmerica, 1993, 83 (6): 1778- 1798.
Beresnev I A, Atkinson G M. Modeling finite-fault radiation from the ωn spectrum. Bulletin of the Seismological Society of America, 1997, 87 (1): 67- 84.
Beresnev I A, Atkinson G M. FINSIM--a FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seismological Research Letters, 1998, 69 (1): 27- 32.
Boore D M, Joyner W B. Site amplifications for generic rock sites. Bulletin of the Seismological Society of America, 1997, 87 (2): 327- 341.
Boore D M. Simulation of ground motion using the stochastic method. Pure and Applied Geophysics, 2003, 160 (3): 635- 676.
Brune J N. Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 1970, 75 (26): 4997- 5009.
Dang P F, Liu Q F, Wang C, et al. Review on the stochastic finite-fault ground motion simulation method. Earthquake Engineering and Engineering Dynamics, 2020, 40 (6): 131- 139.
Dang P F, Cui J, Liu Q F. Estimation of model parameters and simulation of earthquake ground motion by stochastic finite-fault modelling based on a modified slip-related corner frequency. Stochastic Environmental Research and Risk Assessment, 2024, 38 (2): 489- 501.
Dreger D, Hurtado G, Chopra A, et al. Near-field across-fault seismic ground motions. Bulletin of the Seismological Society of America, 2011, 101 (1): 202- 221.
Graves R W, Pitarka A. Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 2010, 100 (5A): 2095- 2123.
Guo X, Zhang Y S, Xin H L, et al. Inelastic attenuation value q and site response in the northeastern margin of Qinghai-Tibet Plateau. Journal of Seismological Research, 2008, 31 (2): 114- 118.
Hartzell S H. Earthquake aftershocks as Green's functions. Geophysical Research Letters, 1978, 5 (1): 1- 4.
Hua S B, Xu C Y, Zhou J C, et al. Source characteristics and disaster mechanisms of the 2023 Gansu Jishishan MW6. 0 Earthquake. Chinese Journal of Geophysics, 2024, 67 (7): 2625- 2636.
Irikura K. Semi-empirical estimation of strong ground motions during large earthquakes. Bulletin of the Disaster Prevention Research Institute, Kyoto University, 1983, 33: 63- 104.
Irikura K, Miyake H. Recipe for predicting strong ground motion from crustal earthquake scenarios. Pure and Applied Geophysics, 2011, 168 (1): 85- 104.
Kamae K, Irikura K, Pitarka A. A technique for simulating strong ground motion using hybrid Green's function. Bulletin of the Seismological Society of America, 1998, 88 (2): 357- 367.
Lan J Y, Wang Y W, Liu J, et al. Strong ground motion simulation of the Tangshan earthquake based on the stochastic finite fault method. Journal of Seismological Research, 2019, 42 (4): 503- 509.
Lin D X, Ma Q, Tao D W, et al. Simulation of ground motions caused by subduction slab earthquakes based on stochastic finite fault method. Journal of Harbin Institute of Technology, 2023, 55 (10): 103- 113.
Motazedian D, Atkinson G M. Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 2005, 95 (3): 995- 1010.
Pitarka A, Graves R, Irikura K, et al. Refinements to the Graves-Pitarka kinematic rupture generator, including a dynamically consistent slip-rate function, applied to the 2019 MW7.1 Ridgecrest earthquake. Bulletin of the Seismological Society of America, 2022, 112 (1): 287- 306.
Sun X D. 2010. Some issues on estimation of strong ground motion field[Ph. D. thesis] (in Chinese). Harbin: Harbin Institute of Technology.
Sun X D, Tao X X, Chen F. Improvements of corner frequency and scaling factor for stochastic finite-fault modeling. Earthquake Engineering and Engineering Vibration, 2010, 9 (4): 503- 511.
Sun X D, Tao X X. Hybrid simulation of broadband ground motion: Overview. Acta Seismologica Sinica, 2012, 34 (4): 571- 577.
Wang H T, Zhang Q T, Wang X Q, et al. Rapid analysis of the impact of the 2023 Jishishan MS6.2 earthquake on the deformation of GNSS reference stations. Journal of Geodesy and Geodynamics, 2025, 45 (1): 5- 12.
Wang H Y, Li Q. Study on rapid generation of near-fault Shakemaps after an earthquake: a case of Menyuan earthquake on January 8, 2022, Qinhai Province. World Earthquake Engineering, 2022, 38 (2): 1- 9.
Wang L C, Hou S S, Dong Y, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan MS6.2 earthquake and suggestions for their risk control. Journal of Geological Hazard and Control, 2024, 35 (3): 108- 118.
Wang Y S, Zhao B, Ji F, et al. Preliminary insights into the hazards triggered by the 2023 Jishishan MS6.2 earthquake in Gansu Province. Journal of Chengdu University of Technology(Science & Technology Edition), 2024, 51 (1): 1- 8.
Xi S H, Li X B, Xuan Y T, et al. Strong ground motion simulation of two historical earthquakes in the Loess Plateau. Progress in Geophysics, 2023, 38 (6): 2451- 2463.
Xu Q, Peng D L, Fan X M, et al. Preliminary study on the characteristics and initiation mechanism of Zhongchuan flowslide due to liquefaction triggered by the MS6.2 Jishishan Earthquake in Gansu Province. Geomatics and Information Science of Wuhan University, 2025, 50 (2): 207- 222.
Yu R F, Zhang C R, Zhang D F, et al. Study on design parameters for dam site based on maximum credible earthquake of near-field seismogenic structure. China Civil Engineering Journal, 2022, 55 (3): 117- 128.
Yu Y. 2012. Empirical estimate model for ground motion of Wenchuan earthquake zone[Ph. D. thesis] (in Chinese). Harbin: Institute of Engineering Mechanics, China Earthquake Administration.
Yu Y X, Li S Y, Xiao L. Development of ground motion attenuation relations for the new seismic hazard map of China. Technology for Earthquake Disaster Prevention, 2013, 8 (1): 24- 33.
Yuan D Y, Zhang P Z, Lei Z S, et al. A preliminary study on the new activity features of the Lajishan mountain fault zone in Qinghai Province. Earthquake Research in China, 2005, 21 (1): 93- 102.
Zhou J. 2023. High-Resolution VS30 Map for Affected Areas of the December 2023 M6.2 Jishixia Earthquake (Located WNW of Linxia Chengguanzhen), China, doi: 10.13140/RG.2.2.27294.51529.
鹏飞, 启方, , 等. 地震动随机有限断层模拟方法综述. 地震工程与工程振动, 2020, 40 (6): 131- 139.
, 元生, 海亮, 等. 青藏高原东北缘地区非弹性衰减Q值和场地响应的研究. 地震研究, 2008, 31 (2): 114- 118.
思博, 晨雨, 江诚, 等. 2023年甘肃积石山MW6.0地震震源特征与灾害机理. 地球物理学报, 2024, 67 (7): 2625- 2636.
景岩, 延伟, , 等. 基于随机有限断层方法的唐山地震强地面运动模拟. 地震研究, 2019, 42 (4): 503- 509.
德昕, , 冬旺, 等. 随机有限断层法的俯冲带板内地震动模拟. 哈尔滨工业大学学报, 2023, 55 (10): 103- 113.
美国地质勘探局. 2022. 1900年-2022年全球地震分布数据.
孙晓丹. 2010. 强地震动场估计中若干问题的研究[博士论文]. 哈尔滨: 哈尔滨工业大学.
晓丹, 夏新. 宽频带地震动混合模拟方法综述. 地震学报, 2012, 34 (4): 571- 577.
海涛, 庆涛, 孝青, 等. 2023年甘肃积石山MS6.2地震对GNSS基准站形变影响快速分析. 大地测量与地球动力学, 2024, 45 (1): 5- 12.
海云, . 震后近断层震动图的快速产出研究——以2022年1月8日青海门源地震为例. 世界地震工程, 2022, 38 (2): 1- 9.
立朝, 圣山, , 等. 甘肃积石山MS6.2级地震的同震地质灾害基本特征及风险防控建议. 中国地质灾害与防治学报, 2024, 35 (3): 108- 118.
运生, , , 等. 2023年甘肃积石山MS6.2级地震震害异常的启示. 成都理工大学学报(自然科学版), 2024, 51 (1): 1- 8.
书衡, 孝波, 雨童, 等. 黄土高原两次历史地震强地震动模拟. 地球物理学进展, 2023, 38 (6): 2451- 2463.
, 大雷, 宣梅, 等. 甘肃积石山MS6.2地震触发青海中川乡液化型滑坡-泥流特征与成因机理. 武汉大学学报(信息科学版), 2025, 50 (2): 207- 222.
瑞芳, 翠然, 冬锋, 等. 基于近场发震构造最大可信地震的坝址设计参数综合评价. 土木工程学报, 2022, 55 (3): 117- 128.
喻烟. 2012. 汶川地震区地震动估计经验模型[博士论文]. 哈尔滨: 中国地震局工程力学研究所.
言祥, 山有, . 为新区划图编制所建立的地震动衰减关系. 震灾防御技术, 2013, 8 (1): 24- 33.
道阳, 培震, 中生, 等. 青海拉脊山断裂带新活动特征的初步研究. 中国地震, 2005, 21 (1): 93- 102.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(9513 KB)

Accesses

Citation

Detail

Sections
Recommended

/