Research on gas content identification method for low-permeability tight reservoirs based on ModernTCN deep learning algorithm under few-well conditions

ShuiJian WEI, TianJi XU, TengYun DANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2123-2134.

PDF(8445 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8445 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2123-2134. DOI: 10.6038/pg2025JJ0023

Research on gas content identification method for low-permeability tight reservoirs based on ModernTCN deep learning algorithm under few-well conditions

Author information +
History +

Abstract

Low-permeability tight gas reservoirs are rich in reserves, but their natural gas spatial distribution prediction is extremely challenging due to the complex factors such as reservoir heterogeneity, anisotropy, low porosity, and low permeability. Especially under conditions of limited well data, the lack of core test data, unclear logging and seismic response mechanisms, and insufficient geological understanding restrict the accuracy of gas content identification in low-permeability tight reservoirs. Therefore, this paper proposes a method for gas content tight reservoirs based on the Modern TCN deep learning algorithm under conditions of few wells.First, the sensitive parameters for gas content response are analyzed using well log data, such as sonic time difference (DT), shear sonic time difference (DTS), and density (ρ). Second, the Modern TCN (Modern Temporal Convolutional Network) deep learning network is constructed, with the sensitive parameters as the input for model training and testing. Finally, the decoupled design is used to separate the temporal and feature information of sensitive parameters, fully capturing the gas content characteristics of the reservoir and predicting the spatial distribution characteristics of the reservoir. This method was applied to the gas content identification of tight clastic gas reservoirs in the Huangyan structural belt of the Xihu Sag in a certain sea area, achieving a good well-seismic matching effect. It proves that this method can provide support for exploration and development of low-permeability tight clastic gas reservoirs under few-well conditions.

Key words

Well logging / Seismic / ModernTCN / Tight clastic reservoir / Gas-bearing identification

Cite this article

Download Citations
ShuiJian WEI , TianJi XU , TengYun DANG. Research on gas content identification method for low-permeability tight reservoirs based on ModernTCN deep learning algorithm under few-well conditions[J]. Progress in Geophysics. 2025, 40(5): 2123-2134 https://doi.org/10.6038/pg2025JJ0023

References

Berman M, Triki A R, Blaschko M B. 2018. The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. //Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 4413-4421.
Dodda V C, Kuruguntla L, Razak S, et al. 2023. Seismic lithology interpretation using attention based convolutional neural networks. //2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT). Jaipur, India: IEEE, 1-5.
Dubois M K , Bohling G C , Chakrabarti S . Comparison of four approaches to a rock facies classification problem. Computers & Geosciences, 2007, 33 (5): 599- 617.
Gong X H , Chen L L , Li K , et al. Structure types and its geological significance of eastern edge of Xihu sag in the East China Sea shelf Basin. Journal of Jilin University (Earth Science Edition), 2019, 49 (1): 154- 164.
Gu Y F , Zhang D Y , Bao Z D . Permeability prediction using PSO-XGBoost based on logging data. Oil Geophysical Prospecting, 2021, 56 (1): 26- 37.
He J , Wen X T , Nie W L , et al. Fracture zone prediction based on random forest algorithm. Oil Geophysical Prospecting, 2020, 55 (1): 161- 166.
Jiang Y M . Sequence stratigraphy and sedimentary environment evolution of Huagang Formation in C gas-bearing structure of Xihu Sag, East China Sea Basin. Journal of Stratigraphy, 2024, 48 (4): 360- 369.
Li J, Qi Z Y, Kang Y, et al. 2023. Cross-well lithology prediction with unknown target label space. //2023 9th International Conference on Big Data and Information Analytics (BigDIA). Haikou, China: IEEE, 49-54.
Li S , Tian R F , Liu T . Reconstruction of randomly missing seismic data using XGBoost algorithm. Oil Geophysical Prospecting, 2024, 59 (5): 965- 975.
Li W J , Duan D P , Jiang Y P , et al. Differential accumulation law and genesis of deep low permeability natural gas reservoirs in Huangyan area of Xihu sag. Journal of Xi'an Shiyou University (Natural Science Edition), 2022, 37 (2): 9- 15. 9-15, 72
Li Y M , Anderson-Sprecher R . Facies identification from well logs: A comparison of discriminant analysis and naïve Bayes classifier. Journal of Petroleum Science and Engineering, 2006, 53 (3-4): 149- 157.
Liao Y , Liu W , Hu L , et al. Research on high-and low-frequency expansion of seismic amplitude preserving and multi-scale Bayesian fusion inversion. Oil Geophysical Prospecting, 2021, 56 (6): 1330- 1339.
Luo D H, Wang X. 2024. ModernTCN: A modern pure convolution structure for general time series analysis. //The Twelfth International Conference on Learning Representations.
Qu T , Huang Z L , Chen J L , et al. Pore structure characteristics and their diagenetic influence: A case study of paleogene sandstones from the Pinghu and Huagang formations in the Xihu depression, East China Sea basin. Mathematical Geosciences, 2022, 54 (8): 1371- 1412.
Song C , Lu W K , Wang Y Q , et al. Reservoir prediction based on closed-loop CNN and virtual well-logging labels. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5919912.
Song L , Yin X Y , Yin L J . Reservoir lithology identification based on improved adversarial learning. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 7503105.
Suo Y H , Li S Z , Dai L M , et al. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins. Acta Petrologica Sinica, 2012, 28 (8): 2602- 2618.
Tang J F , Xiong J , Liu X J , et al. Adaptive weight combination forecast of rock mechanical parameters in the Fengcheng Formation of Mahu Sag. Oil Geophysical Prospecting, 2024, 59 (1): 1- 11.
Wang B , Shen S H R , Yu L Y , et al. Mine seismic adaptive noise suppression method based on VMD and GA-SVM. Journal of China Coal Society, 2024, 49 (3): 1530- 1538.
Wang G Y , Song J G , Xu F , et al. Random forests lithology prediction method for imbalanced data sets. Oil Geophysical Prospecting, 2021, 56 (4): 679- 687.
Wang J W , P , Zeng L B , et al. Characteristics and influencing factors of reservoir in H3 section of Huagang Formation, X gas reservoir, Xihu Sag. Fault-Block Oil & Gas Field, 2020, 27 (1): 22- 27.
Wei G H , Han H W , Liu H J , et al. Facies-controlled porosity prediction of sandstone reservoirs based on semi-supervised Gaussian mixture model and gradient boosting tree. Oil Geophysical Prospecting, 2023, 58 (1): 46- 55.
Wu G F , Xiao M T , Wang H Z , et al. Intelligent interpretation and modeling method of velocity semblance based on Bayesian decision theory. Oil Geophysical Prospecting, 2023, 58 (3): 590- 597. 590-597, 625
Xu Y D , Liang Y P , Jiang S S , et al. Evolution of Cenozoic sedimentary basins in eastern China. Earth Science, 2014, 39 (8): 1079- 1098.
Zhang J , Li J Y , Chen X H , et al. A spatially coupled data-driven approach for lithology/fluid prediction. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (7): 5526- 5534.
Zhang Y Z , Jiang Y M , Zou W , et al. Lithostratigraphic division and correlation of the Paleogene in the East China Sea Basin. Journal of Stratigraphy, 2024, 48 (4): 341- 359.
Zhou L J, Lu S X, Liu Y W, et al. 2020. Lithology identification based on multi-scale residual one-dimensional convolutional neural network. //Proceedings of the 3rd International Conference on Big Data Technologies. Qingdao, China: ACM, 167-171.
Zhou X H , Gao S L , Gao W Z , et al. Formation and distribution of marine-continental transitional lithologic reservoirs in Pingbei slope belt, Xihu sag, East China Sea Shelf Basin. China Petroleum Exploration, 2019, 24 (2): 153- 164.
Zou G G , Ding J Y , Ren K , et al. Automatic identification method of seismic fault based on LLE and SVM. Journal of China Coal Society, 2023, 48 (4): 1634- 1644.
兴会 , 琳琳 , , 等. 东海陆架盆地西湖凹陷东部边缘结构解释及地质意义. 吉林大学学报(地球科学版), 2019, 49 (1): 154- 164.
宇峰 , 道勇 , 志东 . 测井资料PSO-XGBoost渗透率预测. 石油地球物理勘探, 2021, 56 (1): 26- 37.
, 晓涛 , 文亮 , 等. 利用随机森林算法预测裂缝发育带. 石油地球物理勘探, 2020, 55 (1): 161- 166.
一鸣 . 东海盆地西湖凹陷C气田花港组层序地层及沉积环境演化规律. 地层学杂志, 2024, 48 (4): 360- 369.
, 仁飞 , . 应用XGBoost算法的随机缺失地震数据重建. 石油地球物理勘探, 2024, 59 (5): 965- 975.
文俊 , 冬平 , 云鹏 , 等. 西湖凹陷黄岩区深层低渗天然气藏差异聚集规律及成因浅析. 西安石油大学学报(自然科学版), 2022, 37 (2): 9- 15. 9-15, 72
, , , 等. 地震保幅高低频拓展与多尺度贝叶斯融合反演. 石油地球物理勘探, 2021, 56 (6): 1330- 1339.
艳慧 , 三忠 , 黎明 , 等. 东亚及其大陆边缘新生代构造迁移与盆地演化. 岩石学报, 2012, 28 (8): 2602- 2618.
俊方 , , 向君 , 等. 玛湖凹陷风城组岩石力学参数自适应权重组合预测. 石油地球物理勘探, 2024, 59 (1): 1- 11.
, 申思 洪任 , 立元 , 等. 基于VMD和GA-SVM的矿井地震自适应噪声压制方法. 煤炭学报, 2024, 49 (3): 1530- 1538.
光宇 , 建国 , , 等. 不平衡样本集随机森林岩性预测方法. 石油地球物理勘探, 2021, 56 (4): 679- 687.
健伟 , , 联波 , 等. 西湖凹陷X气藏花港组H3段储层特征及影响因素. 断块油气田, 2020, 27 (1): 22- 27.
国华 , 宏伟 , 浩杰 , 等. 基于半监督高斯混合模型与梯度提升树的砂岩储层相控孔隙度预测. 石油地球物理勘探, 2023, 58 (1): 46- 55.
国富 , 明图 , 华忠 , 等. Bayes决策理论下的速度谱智能化解释及建模方法. 石油地球物理勘探, 2023, 58 (3): 590- 597. 590-597, 625
亚东 , 银平 , 尚松 , 等. 中国东部新生代沉积盆地演化. 地球科学, 2014, 39 (8): 1079- 1098.
迎朝 , 一鸣 , , 等. 东海盆地古近系地层划分与对比. 地层学杂志, 2024, 48 (4): 341- 359.
心怀 , 顺莉 , 伟中 , 等. 东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测. 中国石油勘探, 2019, 24 (2): 153- 164.
冠贵 , 建宇 , , 等. 基于LLE和SVM的地震断层自动识别方法. 煤炭学报, 2023, 48 (4): 1634- 1644.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(8445 KB)

Accesses

Citation

Detail

Sections
Recommended

/