Research on pore pressure prediction method based on XGBoost

Bing ZHANG, XiaoTing WANG, FuYing XU, YuJia QIN, ZhiQian WANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 541-555.

PDF(11880 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11880 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 541-555. DOI: 10.6038/pg2025JJ0121

Research on pore pressure prediction method based on XGBoost

Author information +
History +

Abstract

To address the limitations of conventional empirical formula-based pore pressure prediction methods in engineering practice, such as high dependency on velocity, numerous required empirical parameters, and significant human influence, this study proposes an intelligent pore pressure prediction model based on eXtreme Gradient Boosting (XGBoost). By incorporating the ratio of actual P-wave velocity to the normal compaction trendline as a feature parameter in model training, the prediction accuracy and generalization capability of pore pressure are significantly improved. Furthermore, an enhanced method is introduced, which replaces the normal compaction trendline with the Dv curve for pore pressure prediction, effectively mitigating the computational complexity and subjectivity associated with establishing the normal compaction trendline. The effectiveness of this improved method is also validated across other machine learning regression models. The results demonstrate that the proposed intelligent pore pressure prediction model and its enhanced method exhibit high prediction accuracy and generalization ability, providing efficient and reliable data support for drilling safety. This approach holds significant engineering application value and broad prospects for future use.

Key words

Pore pressure / Machine learning / XGBoost / Normal compaction trend / Dv curve

Cite this article

Download Citations
Bing ZHANG , XiaoTing WANG , FuYing XU , et al . Research on pore pressure prediction method based on XGBoost[J]. Progress in Geophysics. 2025, 40(2): 541-555 https://doi.org/10.6038/pg2025JJ0121

References

Abdelaal A , Elkatatny S , Abdulraheem A . Real-time prediction of formation pressure gradient while drilling. Scientific Reports, 2022, 12 (1): 11318
Ajibola O T, Sheng J, McElroy P, et al. 2022. Machine learning applications for reservoir pressure trend prediction in potash area of Delaware basin. //SPE/AAPG/SEG Unconventional Resources Technology Conference. Houston, Texas, USA.
Azadpour M , Manaman N S , Kadkhodaie-Ilkhchi A , et al. Pore pressure prediction and modeling using well-logging data in one of the gas fields in south of Iran. Journal of Petroleum Science and Engineering, 2015, 128: 15- 23.
Bowers G L. 2001. Determining an appropriate pore-pressure estimation strategy. //Offshore Technology Conference. Houston, Texas.
Chen J X , Chen G X , Li J , et al. Efficient seismic data denoising via deep learning with improved MCA-SCUNet. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5903614
Deng S , Pan H Y , Wang H G , et al. A hybrid machine learning optimization algorithm for multivariable pore pressure prediction. Petroleum Science, 2024, 21 (1): 535- 550.
Eaton B A. 1975. The equation for geopressure prediction from well logs. //Fall Meeting of the Society of Petroleum Engineers of AIME. Dallas, Texas.
Fan H H . Discussions on the traditional pore pressure evaluation methods by using well logging. Petroleum Exploration and Development, 2003, 30 (4): 72- 74.
Gao F , Qu Z P , Wei Z , et al. Study on well-log lithofacies classification based on machine learning methods. Progress in Geophysics, 2024, 39 (3): 1173- 1192.
Hottmann C E , Johnson R K . Estimation of formation pressures from log-derived shale properties. Journal of Petroleum Technology, 1965, 17 (6): 717- 722.
Huang H L , Li J , Yang H W , et al. Research on prediction methods of formation pore pressure based on machine learning. Energy Science & Engineering, 2022, 10 (6): 1886- 1901.
Jin H , Ma J F , Li L , et al. Study on the prediction method of formation pressure in the southern part of the Bodong low uplift. Progress in Geophysics, 2024, 39 (2): 788- 799.
Li H Y , Tan Q , Deng J G , et al. A comprehensive prediction method for pore pressure in abnormally high-pressure blocks based on machine learning. Processes, 2023, 11 (9): 2603
Ma T S , Xiang G F , Gui J C , et al. Physics-constrained distributed neural network model for 3D in-situ stress prediction. Chinese Journal of Geophysics, 2024, 67 (8): 3211- 3228.
Riahi M A , Fakhari M G . Pore pressure prediction using seismic acoustic impedance in an overpressure carbonate reservoir. Journal of Petroleum Exploration and Production Technology, 2022, 12 (12): 3311- 3323.
Shi M X , Liu Z D , Yang X F , et al. Review and prospect prediction technology for formation pore pressure by geophysical well logging. Progress in Geophysics, 2020, 35 (5): 1845- 1853.
Shi P Y , Xu S H , Feng J M , et al. Log identification of fluid types in tight sandstone reservoirs using an improved Stacking algorithm. Progress in Geophysics, 2024, 39 (1): 280- 290.
Song J G , Ntibahanana M . Developing deep learning methods for pre-stack seismic data inversion. Journal of Applied Geophysics, 2024, 222: 105336
Vernik L , de Newton P V . Pore pressure prediction in organic shales. The Leading Edge, 2022, 41 (3): 172- 176.
Wang B , Zhao J G , Li W , et al. Experimental study on the effect of abnormal high pressure on the elastic properties of glutenite and a novel pressure prediction model: a case study from Triassic Formation in north slope of Mahu Sag, Junggar Basin. Chinese Journal of Geophysics, 2022, 65 (8): 3157- 3171.
Wang M X, Østmo S, Munkvold O P N. 2025. Machine-assisted 4D seismic interpretation. //4D Forum—Insight to Actions: A Global Forum. Galveston, Texas: Society of Exploration Geophysicists, 135-138.
Xing X S , Zhou C S , He Y M , et al. Pore pressure pre-stack seismic prediction method of complicated reservoirs based on formation compaction trend ratio. Progress in Geophysics, 2024, 39 (6): 2298- 2305.
Yu H , Chen G X , Gu H M . A machine learning methodology for multivariate pore-pressure prediction. Computers and Geosciences, 2020, 143: 104548
Zhang B , Xu J L . Predicting the formation pore pressure based on ADCIGS. Chinese Journal of Geophysics, 2020, 63 (1): 313- 319.
Zhang G D , Davoodi S , Band S S , et al. A robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques. Energy Reports, 2022, 8: 2233- 2247.
洪海 . 测井资料检测地层孔隙压力传统方法讨论. 石油勘探与开发, 2003, 30 (4): 72- 74.
, 志鹏 , , 等. 基于机器学习方法的测井岩相分类研究. 地球物理学进展, 2024, 39 (3): 1173- 1192.
, 劲风 , , 等. 渤东低凸起南段地层压力预测方法研究. 地球物理学进展, 2024, 39 (2): 788- 799.
天寿 , 国富 , 俊川 , 等. 基于物理约束的分布式神经网络三维地应力预测模型. 地球物理学报, 2024, 67 (8): 3211- 3228.
梦璇 , 之的 , 学峰 , 等. 地层孔隙压力地球物理测井预测技术综述及展望. 地球物理学进展, 2020, 35 (5): 1845- 1853.
鹏宇 , 思慧 , 加明 , 等. 基于改进Stacking算法的致密砂岩储层测井流体识别. 地球物理学进展, 2024, 39 (1): 280- 290.
, 建国 , , 等. 异常高压对砂砾岩弹性性质影响的实验机理研究与压力预测新模型——以准噶尔盆地玛湖凹陷北斜坡三叠系为例. 地球物理学报, 2022, 65 (8): 3157- 3171.
雪松 , 长所 , 英明 , 等. 基于地层压实趋势比的复杂油气储层孔隙压力地震预测方法. 地球物理学进展, 2024, 39 (6): 2298- 2305.
, 嘉亮 . 基于ADCIGS预测地层孔隙压力的方法研究. 地球物理学报, 2020, 63 (1): 313- 319.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(11880 KB)

Accesses

Citation

Detail

Sections
Recommended

/