Development of ultra-broadband distributed domestic magnetotelluric acquisition station

ChangSheng LIU, TingJie WANG, Jian CHEN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2286-2300.

PDF(12459 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(12459 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2286-2300. DOI: 10.6038/pg2025JJ0134

Development of ultra-broadband distributed domestic magnetotelluric acquisition station

Author information +
History +

Abstract

With the rapid development of China's economy, the consumption of shallow mineral resources continues to intensify, and the geological exploration work in China continues to advance to deep and complex areas, the exploration of deep geological resources in our country is also confronted with multiple challenges, such as detection depth, anti-interference ability, and measurement accuracy. The demand for deep exploration is also increasing, and the demand for the domestic distributed magnetotelluric acquisition station is becoming increasingly urgent. In this paper, a domestic ultra-wideband distributed acquisition station DMT-V1 for magnetotelluric detection is designed and developed. Combined with LORA autonomous network and 4G networking communication technology, remote real-time data monitoring and remote data download are realized. The developed acquisition station consists of 2 electric field channels and 3 magnetic field channels, and supports low noise fluxgate sensor, long period induction magnetic sensor, magnetic sensor field calibration; MT (Magnetotelluric) and LMT (ultra-long period Magnetotelluric) methods are supported. The AD converter uses a 32-bit high-precision ADC chip CX1282, and is equipped with a low-power hardware processor. Under ARM intermittent operation mode, the power consumption of the acquisition station can be less than 1W@12VDC. Field detection experiments were carried out on this system. Comparative tests with advanced foreign instruments showed that the performance indicators of the DMT-V1 acquisition station generally reached the international advanced level. Field application tests of the DMT-V1 acquisition station were conducted respectively in different regions, and its detection frequency could reach up to 100000 seconds, supports MT and LMT methods, and has the characteristics of high stability, low power consumption, high precision, light weight and portability. The application scope of this equipment covers shallow mineral exploration, deep and ultra-deep oil and gas exploration, and the investigation of the electrical structure of the crust and upper mantle.

Key words

Ultra-wide band / Distributed / Magnetotelluric / Acquisition station

Cite this article

Download Citations
ChangSheng LIU , TingJie WANG , Jian CHEN. Development of ultra-broadband distributed domestic magnetotelluric acquisition station[J]. Progress in Geophysics. 2025, 40(5): 2286-2300 https://doi.org/10.6038/pg2025JJ0134

References

Cagniard L . Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 1953, 18 (3): 605- 635.
Chang K , Zhang Q J , Jiang Q Y , et al. Research status of geothermal energy detection technology in middle-deep depths in China. Progress in Geophysics, 2025, 40 (1): 54- 69.
Chen J. 2012. Research on key techniques of broadband time-frequency electromagnetic receiver [Master's thesis] (in Chinese). Changchun: Jilin University.
Chen X , Gong C Y , Wang G J , et al. Efficient scalable three-dimensional magnetotelluric forward modeling method considering resistive anisotropy and magnetic resistivity. Progress in Geophysics, 2024, 39 (5): 1963- 1978.
Deng Y , Tang J . Advances in magnetotelluric data processing. Progress in Geophysics, 2019, 34 (4): 1411- 1422.
Di Q Y , Fang G Y , Zhang Y M . Research of the Surface Electromagnetic Prospecting (SEP) system. Chinese Journal of Geophysics, 2013, 56 (11): 3629- 3639.
He J S . Wide field electromagnetic sounding methods. Journal of Central South University (Science and Technology), 2010, 41 (3): 1065- 1072.
Huang D N , Yu P , Di Q Y , et al. Development of key instruments and technologies of deep exploration today and tomorrow. Journal of Jilin University (Earth Science Edition), 2012, 42 (5): 1485- 1496.
Li B , Xu Q , Liu T X , et al. Design and realization of electromagnetic instrument data acquisition circuit for landslide detection. Applied Geophysics, 2024, 21 (2): 316- 330.
Li P , Luo Y Q , Tian Y , et al. Research progress of geophysical exploration technology for deep geological resources. Progress in Geophysics, 2021, 36 (5): 2011- 2033.
Lin J , Yan F X , Pi S . Seeking fundamental innovations in geoscientific instruments to explore geophysical technology. Chinese Journal of Geophysics, 2024, 67 (12): 4433- 4455.
Liu G D , Chen L S . Magnetotelluric Sounding Research. Beijing: Earthquake Publishing House, 1984
Liu G D . Developing earth exploration technology in three dimension, improving the performance of instruments for geosciences. Chinese Journal of Geophysics, 2013, 56 (11): 3607- 3609.
Liu L C. 2014. Research on key techniques of networked receiver for controlled source audio-frequency magnetotelluric method [Master's thesis] (in Chinese). Changchun: Jilin University.
Q T , Zhang X P , Tang J T , et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China. Chinese Journal of Geophysics, 2019, 62 (10): 3629- 3664.
Teng J W . The development guide direction and locus of research manufacture and industrialization for the geophysical instruments and experimental equipments in China. Geophysical Prospecting for Petroleum, 2006, 45 (3): 209- 216.
Tikhonov A N . The determination of the electric properties of deep layers of the earth's crust. Dokl Acad Nauk SSSR, 1950, (73): 295- 297.
Yan C , Chen R J , Shen R J , et al. Distributed multi-channel data acquisition system for electrical and electromagnetic methods. Progress in Geophysics, 2021, 36 (4): 1743- 1750.
Yan K , Yuan Z Z , Han X , et al. The design of high precision geomagnetic data acquisition board. Electronic Design Engineering, 2015, 23 (3): 79- 82.
Yin C , Maurer H M . Electromagnetic induction in a layered earth with arbitrary anisotropy. Geophysics, 2001, 66 (5): 1405- 1416.
Zhang K , Liu L , Ma X Z , et al. Technical progress of processing methods for magnetotelluric sounding data. Geological Survey of China, 2024, 11 (5): 129- 138.
Zhang Q M , Feng Y Q , Liu F B , et al. Research and implementation of distributed multi-channel electromagnetic acquisition station and its monitoring software. Progress in Geophysics, 2020, 35 (6): 2441- 2449.
Zhang W X. 2009. Research on the prototype of deep distributed electromagnetic exploration receiver [Master's thesis] (in Chinese). Changchun: Jilin University.
Zhang W X , Lin J , Liu L C , et al. Design and implementation of broadband data acquisition system for distributed electromagnetic exploration. Journal of Jilin University (Engineering and Technology Edition), 2012, 42 (6): 1426- 1431.
Zheng C J , Liu X Z , Lin P R , et al. Design and realization of the distributed electromagnetic instrument system. Chinese Journal of Geophysics, 2019, 62 (10): 3772- 3784.
, 钱江 , 奇云 , 等. 我国中深层地热能探测技术研究现状. 地球物理学进展, 2025, 40 (1): 54- 69.
陈健. 2012. 宽频带时频电磁接收机关键技术研究[硕士论文]. 长春: 吉林大学.
, 春叶 , 光杰 , 等. 高可扩展三维大地电磁电阻率各向异性、磁导率正演. 地球物理学进展, 2024, 39 (5): 1963- 1978.
, . 大地电磁测深方法数据处理进展. 地球物理学进展, 2019, 34 (4): 1411- 1422.
青云 , 广有 , 一鸣 . 地面电磁探测系统(SEP)研究. 地球物理学报, 2013, 56 (11): 3629- 3639.
继善 . 广域电磁测深法研究. 中南大学学报(自然科学版), 2010, 41 (3): 1065- 1072.
大年 , , 青云 , 等. 地球深部探测关键技术装备研发现状及趋势. 吉林大学学报(地球科学版), 2012, 42 (5): 1485- 1496.
, 玉钦 , , 等. 深部地质资源地球物理探测技术研究发展. 地球物理学进展, 2021, 36 (5): 2011- 2033.
, 复雪 , . 探索地学仪器原始创新·致力地球物理技术突破. 地球物理学报, 2024, 67 (12): 4433- 4455.
国栋 , 乐寿 . 大地电磁测深研究. 北京: 地震出版社, 1984
光鼎 . 发展地球立体探测技术, 提高地学仪器装备水平. 地球物理学报, 2013, 56 (11): 3607- 3609.
刘立超. 2014. 网络化可控源音频大地电磁法接收系统关键技术研究[硕士论文]. 长春: 吉林大学.
庆田 , 晓培 , 井田 , 等. 金属矿地球物理勘探技术与设备: 回顾与进展. 地球物理学报, 2019, 62 (10): 3629- 3664.
吉文 . 中国地球物理仪器的研制和产业化评述. 石油物探, 2006, 45 (3): 209- 216.
, 儒军 , 瑞杰 , 等. 分布式多通道电法电磁法数据同步采集系统. 地球物理学进展, 2021, 36 (4): 1743- 1750.
, 振中 , , 等. 高精度地磁数据采集板的设计. 电子设计工程, 2015, 23 (3): 79- 82.
, , 兴知 , 等. 大地电磁测深数据处理方法技术进展. 中国地质调查, 2024, 11 (5): 129- 138.
启卯 , 永强 , 富波 , 等. 分布式多通道电磁采集站及其监控软件的研究与实现. 地球物理学进展, 2020, 35 (6): 2441- 2449.
张文秀. 2009. 大深度分布式电磁探测接收系统原理样机研究[硕士论文]. 长春: 吉林大学.
文秀 , , 立超 , 等. 分布式电磁探测宽频数据采集系统设计与实现. 吉林大学学报(工学版), 2012, 42 (6): 1426- 1431.
采君 , 昕卓 , 品荣 , 等. 分布式电磁法仪器系统设计及实现. 地球物理学报, 2019, 62 (10): 3772- 3784.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(12459 KB)

Accesses

Citation

Detail

Sections
Recommended

/