Simulation research on grating interferometric displacement measurement technology for MOEMS seismic sensors

HongYu XIE, ZhongXing WANG, Chao LU, Wei XIN, DongRong ZHAO, ShengRu ZHOU, WenTao CUI, LuLu ZHANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2301-2315.

PDF(8004 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8004 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2301-2315. DOI: 10.6038/pg2025JJ0181

Simulation research on grating interferometric displacement measurement technology for MOEMS seismic sensors

Author information +
History +

Abstract

Conventional geophones face challenges such as insufficient sensitivity and poor low-frequency response in deep seismic exploration. Integrated grating interferometry, with its high displacement resolution, shows great potential in optical interferometric geophones. This study investigates the application of integrated grating interferometry in optical interferometric geophones through the following steps: First, a mathematical model for displacement detection based on grating interferometry is established using scalar diffraction theory. Next, the influence of key parameters—including light source wavelength, grating period, duty cycle, and tilt angle—on the relationship between interference fringe intensity and displacement is systematically analyzed. Finally, through the analysis of simulation results, quantitative references were provided for the optical path parameter design of the MOEMS seismic sensor. Based on the parameter design, estimated values for the key performance parameters of the MOEMS seismic sensor were derived. The results show that the displacement-to-voltage conversion sensitivity Sd can reach 2×108 V/m, and the dynamic range Dr can achieve 140 dB.

Key words

Seismic sensor / Integrated grating interferometry / Micro-displacement measurement / MOEMS / Simulation analysis

Cite this article

Download Citations
HongYu XIE , ZhongXing WANG , Chao LU , et al . Simulation research on grating interferometric displacement measurement technology for MOEMS seismic sensors[J]. Progress in Geophysics. 2025, 40(5): 2301-2315 https://doi.org/10.6038/pg2025JJ0181

References

Bicen B. 2010. Micromachined diffraction based optical microphones and intensity probes with electrostatic force feedback [D]. Atlanta: Georgia Institute of Technology.
Cao B. 2023. Design and testing of miniaturized out-of-plane displacement sensor based on self-imaging effect of Micro-nano gratings [Master's thesis](in Chinese). Taiyuan: North University of China.
Elaskar J , Cammarata S , Samà F , et al. Integrated high-speed wavelength tracking on a silicon chip. Journal of Lightwave Technology, 2025, 43 (7): 3388- 3396.
Hall N A , Okandan M , Littrell R , et al. Micromachined optical microphone structures with low thermal-mechanical noise levels. The Journal of the Acoustical Society of America, 2007, 122 (4): 2031- 2037.
Harasse S , Kajiwara K , Datekyu M , et al. Regularized phase shift estimation in X-ray grating interferometry. OSA Continuum, 2021, 4 (11): 2813- 2820.
Lei L H , Zhang Y J , Fu Y X . Displacement measurement error of grating interferometer based on vector diffraction theory. Infrared and Laser Engineering, 2024, 53 (2): 20230536
Li C Y. 2021. Research on new grating ruler based on digital grating[Master's thesis](in Chinese). Beijing: University of Chinese Academy of Sciences.
Liu L Q , Guan Y Q , Zou W Z , et al. Study on the calibration method of nano-positioning stages using grating interferometers. Metrology Science and Technology, 2023, 67 (6): 37- 43.
Liu Y , Liu W , Ma J G . Study on micro-displacement measurement of laser grating interferometry. Laser Journal, 2021, 42 (1): 59- 64.
Luo L B , Shan S N , Li X H . A review: Laser interference lithography for diffraction gratings and their applications in encoders and spectrometers. Sensors, 2024, 24 (20): 6617
Luo X D , Qiao X G , Jia Z A , et al. The experimentation of fiber Bragg grating geophone. Progress in Geophysics, 2012, 27 (3): 1202- 1206.
Ma C , Qiao X G , Jia Z A , et al. Research and application of fiber Bragg grating geophone. Progress in Geophysics, 2008, 23 (2): 622- 626.
Pan X P. 2023. Research on fabrication and characteristics of chirped fiber gratings[Ph. D. thesis](in Chinese). Jilin: Jilin University.
Ren L G , Zhang G D , Yang D K , et al. Analysis and application of phase difference between velocity geophone and piezoelectric geophone. Progress in Geophysics, 2015, 30 (1): 454- 459.
Ren L G . Analysis and application of velocity and acceleration geophone's seismic response characteristic. Progress in Geophysics, 2018, 33 (5): 2159- 2165.
Ren M J. 2022. Research on self-mixing interference displacement measurement method based on all-fiber laser[Master's thesis](in Chinese). Tianjin: Tianjin University of Technology.
Roth M M, Madhav K, Stoll A, et al. 2023. Astrophotonics: photonic integrated circuits for astronomical instrumentation. //Proceedings Volume 12424, Integrated Optics: Devices, Materials, and Technologies XXVII. San Francisco, California, United States: SPIE, 44-59, doi: 10.1117/12.2655630.
Shi R Z, Liu H W, Shao Y Q, et al. 2023. Wavefront reconstruction for double-grating Ronchi lateral shearing interferometry with nonlinear optimization. //Proceedings Volume 12765, Optical Design and Testing XIII. Beijing, China: SPIE, 149-155, doi: 10.1117/12.2688489.
Shi Y S , Wang K , Zhang S H , et al. Establishment of a dual traceability chain metrology standard device for micro-nano displacement positioning calibration. Metrology Science and Technology, 2025, 69 (1): 3- 10. 3-10, 46
Tang L , Qiu L R , Zhao J H , et al. High-precision phase shift method for heavy-load reference mirrors based on nano-precision grating sensor monitoring. Optics and Lasers in Engineering, 2024, 173: 107889
van der Zon L R , Bru L A , Muñoz P , et al. The design and characterization in amplitude and phase of a compact 8-channel loop-back AWG based integrated comb processor. IEEE Journal of Quantum Electronics, 2024, 60 (6): 0600208
Wali F , Wang S H , Li J , et al. Image quality analysis of X-ray grating interferometer using integrating-bucket method. Journal of Imaging Science and Technology, 2020, 64 (2): jist0689
Wei P P. 2015. Research on 3-D displacement measurement technology based on double grating interference[Master's thesis](in Chinese). Harbin: Harbin Institute of Technology.
Xu L L , Gong C C , Wang M X , et al. Comparison of signal-to-noise ratio of velocimeter and accelerometer. Progress in Geophysics, 2023, 38 (2): 891- 899.
Xu M N. 2019. Study on polarization characteristics of optical system for phase grating position measurement. Beijing: University of Chinese Academy of Sciences.
Yang Z Y. 2023. Research on multifunctional microsensors based on self-imaging of micro-nano gratings[Master's thesis](in Chinese). Taiyuan: North University of China.
Zang T Y. 2020. The manipulation of light and optical nanometrology with micro-nano structures[Ph. D. thesis](in Chinese). Hefei: University of Science and Technology of China.
Zhang F X , Wu X B , Li S J , et al. Fiber laser micro-seismic geophone research and application prospects. Progress in Geophysics, 2014, 29 (5): 2456- 2460.
Zhang M Y , Lu C , Liu W , et al. Integrated micro sensor based on grating interferometer: A review. IEEE Sensors Journal, 2025, 25 (2): 2073- 2089.
Zhang Y. 2024. Optimized design and experimental study of optical/mechanical structure of precision grating micrometer[Master's thesis](in Chinese). Zhengzhou: Zhengzhou University of Light Industry.
Zhang Y D , Tu H L , Wu Y F , et al. LNOI-based photonic integrated spatial mode controller with reflective structure. Journal of Lightwave Technology, 2024, 42 (23): 8295- 8301.
Zhu S Y. 2019. Research on precision measurement technology of high optical subdivision grating interferometer[Master's thesis](in Chinese). Beijing: University of Chinese Academy of Sciences.
曹斌. 2023. 基于微米光栅自成像效应小型化离面位移传感器设计及测试[硕士论文]. 太原: 中北大学.
李华 , 玉杰 , 云霞 . 基于矢量衍射理论的光栅干涉仪位移测量误差研究. 红外与激光工程, 2024, 53 (2): 20230536
李琛毅. 2021. 基于数字光栅的新型光栅尺的研究[硕士论文]. 北京: 中国科学院大学.
丽琴 , 钰晴 , 文哲 , 等. 基于光栅干涉仪的纳米位移台校准方法研究. 计量科学与技术, 2023, 67 (6): 37- 43.
, , 继光 . 激光光栅干涉技术的微位移测量研究. 激光杂志, 2021, 42 (1): 59- 64.
小东 , 学光 , 振安 , 等. 光纤布拉格光栅地震检波器的实验研究. 地球物理学进展, 2012, 27 (3): 1202- 1206.
, 学光 , 振安 , 等. 光纤布拉格光栅地震检波器的研究与应用. 地球物理学进展, 2008, 23 (2): 622- 626.
潘学鹏. 2023. 啁啾光纤光栅的制备及其特性研究[博士论文]. 吉林: 吉林大学.
立刚 , 光德 , 德宽 , 等. 速度检波器与压电检波器相位差异分析及应用. 地球物理学进展, 2015, 30 (1): 454- 459.
立刚 . 速度与加速度检波器地震资料响应特征分析及应用. 地球物理学进展, 2018, 33 (5): 2159- 2165.
任敏嘉. 2022. 基于全光纤激光器的自混合干涉位移测量方法研究[硕士论文]. 天津: 天津理工大学.
玉书 , , 诗涵 , 等. 用于微纳米位移定位校准的双溯源链路计量标准装置的建立. 计量科学与技术, 2025, 69 (1): 3- 10. 3-10, 46
魏培培. 2015. 基于双光栅干涉的三维位移测量技术研究[硕士论文]. 哈尔滨: 哈尔滨工业大学.
, 雄英 , 力涛 , 等. 集成光栅干涉微位移测量方法. 纳米技术与精密工程, 2009, 7 (1): 56- 59.
雷良 , 长春 , 明星 , 等. 速度型与加速度型检波器的信噪比比较. 地球物理学进展, 2023, 38 (2): 891- 899.
杨志涌. 2023. 基于微纳光栅自成像的多功能微型传感器研究[硕士论文]. 太原: 中北大学.
臧天阳. 2020. 微纳结构光场调控及精密位移测量研究[博士论文]. 合肥: 中国科学技术大学.
发祥 , 学兵 , 淑娟 , 等. 光纤激光微地震检波器研究及应用展望. 地球物理学进展, 2014, 29 (5): 2456- 2460.
张勇. 2024. 精密光栅测微计的光/机结构优化设计与实验研究[硕士论文]. 郑州: 郑州轻工业大学.
朱世曜. 2019. 高光学细分光栅干涉仪精密测量技术的研究[硕士论文]. 北京: 中国科学院大学.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(8004 KB)

Accesses

Citation

Detail

Sections
Recommended

/