PDF(8004 KB)
Simulation research on grating interferometric displacement measurement technology for MOEMS seismic sensors
HongYu XIE, ZhongXing WANG, Chao LU, Wei XIN, DongRong ZHAO, ShengRu ZHOU, WenTao CUI, LuLu ZHANG
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2301-2315.
PDF(8004 KB)
PDF(8004 KB)
Simulation research on grating interferometric displacement measurement technology for MOEMS seismic sensors
Conventional geophones face challenges such as insufficient sensitivity and poor low-frequency response in deep seismic exploration. Integrated grating interferometry, with its high displacement resolution, shows great potential in optical interferometric geophones. This study investigates the application of integrated grating interferometry in optical interferometric geophones through the following steps: First, a mathematical model for displacement detection based on grating interferometry is established using scalar diffraction theory. Next, the influence of key parameters—including light source wavelength, grating period, duty cycle, and tilt angle—on the relationship between interference fringe intensity and displacement is systematically analyzed. Finally, through the analysis of simulation results, quantitative references were provided for the optical path parameter design of the MOEMS seismic sensor. Based on the parameter design, estimated values for the key performance parameters of the MOEMS seismic sensor were derived. The results show that the displacement-to-voltage conversion sensitivity Sd can reach 2×108 V/m, and the dynamic range Dr can achieve 140 dB.
Seismic sensor / Integrated grating interferometry / Micro-displacement measurement / MOEMS / Simulation analysis
|
Bicen B. 2010. Micromachined diffraction based optical microphones and intensity probes with electrostatic force feedback [D]. Atlanta: Georgia Institute of Technology.
|
|
Cao B. 2023. Design and testing of miniaturized out-of-plane displacement sensor based on self-imaging effect of Micro-nano gratings [Master's thesis](in Chinese). Taiyuan: North University of China.
|
|
|
|
|
|
|
|
|
|
Li C Y. 2021. Research on new grating ruler based on digital grating[Master's thesis](in Chinese). Beijing: University of Chinese Academy of Sciences.
|
|
|
|
|
|
|
|
|
|
|
|
Pan X P. 2023. Research on fabrication and characteristics of chirped fiber gratings[Ph. D. thesis](in Chinese). Jilin: Jilin University.
|
|
|
|
|
|
Ren M J. 2022. Research on self-mixing interference displacement measurement method based on all-fiber laser[Master's thesis](in Chinese). Tianjin: Tianjin University of Technology.
|
|
Roth M M, Madhav K, Stoll A, et al. 2023. Astrophotonics: photonic integrated circuits for astronomical instrumentation. //Proceedings Volume 12424, Integrated Optics: Devices, Materials, and Technologies XXVII. San Francisco, California, United States: SPIE, 44-59, doi: 10.1117/12.2655630.
|
|
Shi R Z, Liu H W, Shao Y Q, et al. 2023. Wavefront reconstruction for double-grating Ronchi lateral shearing interferometry with nonlinear optimization. //Proceedings Volume 12765, Optical Design and Testing XIII. Beijing, China: SPIE, 149-155, doi: 10.1117/12.2688489.
|
|
|
|
|
|
|
|
|
|
Wei P P. 2015. Research on 3-D displacement measurement technology based on double grating interference[Master's thesis](in Chinese). Harbin: Harbin Institute of Technology.
|
|
|
|
Xu M N. 2019. Study on polarization characteristics of optical system for phase grating position measurement. Beijing: University of Chinese Academy of Sciences.
|
|
Yang Z Y. 2023. Research on multifunctional microsensors based on self-imaging of micro-nano gratings[Master's thesis](in Chinese). Taiyuan: North University of China.
|
|
Zang T Y. 2020. The manipulation of light and optical nanometrology with micro-nano structures[Ph. D. thesis](in Chinese). Hefei: University of Science and Technology of China.
|
|
|
|
|
|
Zhang Y. 2024. Optimized design and experimental study of optical/mechanical structure of precision grating micrometer[Master's thesis](in Chinese). Zhengzhou: Zhengzhou University of Light Industry.
|
|
|
|
Zhu S Y. 2019. Research on precision measurement technology of high optical subdivision grating interferometer[Master's thesis](in Chinese). Beijing: University of Chinese Academy of Sciences.
|
|
曹斌. 2023. 基于微米光栅自成像效应小型化离面位移传感器设计及测试[硕士论文]. 太原: 中北大学.
|
|
|
|
李琛毅. 2021. 基于数字光栅的新型光栅尺的研究[硕士论文]. 北京: 中国科学院大学.
|
|
|
|
|
|
|
|
|
|
潘学鹏. 2023. 啁啾光纤光栅的制备及其特性研究[博士论文]. 吉林: 吉林大学.
|
|
|
|
|
|
任敏嘉. 2022. 基于全光纤激光器的自混合干涉位移测量方法研究[硕士论文]. 天津: 天津理工大学.
|
|
|
|
魏培培. 2015. 基于双光栅干涉的三维位移测量技术研究[硕士论文]. 哈尔滨: 哈尔滨工业大学.
|
|
|
|
|
|
杨志涌. 2023. 基于微纳光栅自成像的多功能微型传感器研究[硕士论文]. 太原: 中北大学.
|
|
臧天阳. 2020. 微纳结构光场调控及精密位移测量研究[博士论文]. 合肥: 中国科学技术大学.
|
|
|
|
张勇. 2024. 精密光栅测微计的光/机结构优化设计与实验研究[硕士论文]. 郑州: 郑州轻工业大学.
|
|
朱世曜. 2019. 高光学细分光栅干涉仪精密测量技术的研究[硕士论文]. 北京: 中国科学院大学.
|
感谢审稿专家提出的修改意见和编辑部的大力支持!
/
| 〈 |
|
〉 |