Preserving the edges and enhancing the discontinuities in seismic impedance inversion

JuanJuan LI, JinWei FANG, Jin YU, YuanPeng ZHANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2028-2039.

PDF(8846 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8846 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (5) : 2028-2039. DOI: 10.6038/pg2025JJ0260

Preserving the edges and enhancing the discontinuities in seismic impedance inversion

Author information +
History +

Abstract

Seismic impedance inversion is an effective method for oil and gas reservoir prediction and has been widely used in industry. Although the technique is very mature, it still faces the problems such as strong ill posedness, poor lateral continuity, and low resolution. The structure-oriented regularization proposed by predecessors can effectively reduce ill posedness in the least-squares inversion process and enhance the lateral continuity of the inversion results, but it cannot fully preserve the geological boundaries and may even cause damage to discontinuous signals such as faults. In order to enhance the ability of inversion algorithms to depict geological structure details and highlight the "block" characteristics of the impedance model, we introduce edge-preserving filter during the inversion iteration process, and use a weight parameter to control the sharpness of model update. For each sampling point in the impedance model, edge-preserving filter searches for the most uniform window around it and assigns the average value of all samples within that window to that point. This processing can preserve sharp interfaces from blurring and significantly improve the resolution of inversion results. The results of model and field data testing show that the proposed method can significantly improve the ability to characterize the structure boundaries and has excellent performance in enhancing the discontinuity features of impedance inversion results.

Key words

Impedance inversion / Edge-preserving filter / Structure-oriented regularization / Fault enhancement / High resolution

Cite this article

Download Citations
JuanJuan LI , JinWei FANG , Jin YU , et al. Preserving the edges and enhancing the discontinuities in seismic impedance inversion[J]. Progress in Geophysics. 2025, 40(5): 2028-2039 https://doi.org/10.6038/pg2025JJ0260

References

Anagaw A Y , Sacchi M D . Edge-preserving smoothing for simultaneous-source full-waveform inversion model updates in high-contrast velocity models. Geophysics, 2018, 83 (2): A33- A37.
Bakker P. 2002. Image structure analysis for seismic interpretation[Ph. D. thesis]. Delft: Delft University of Technology.
Buland A , Omre H . Bayesian linearized AVO inversion. Geophysics, 2003, 68 (1): 185- 198.
Chen Q X , Cao J X , Su Z D , et al. Multi-scale fracture prediction method based on OVT domain seismic data. Progress in Geophysics, 2023, 38 (3): 1084- 1094.
Chen Y K , Chen H M , Xiang K , et al. Preserving the discontinuities in least-squares reverse time migration of simultaneous-source data. Geophysics, 2017, 82 (3): S185- S196.
Dai R H , Yin C , Zaman N , et al. Seismic inversion with adaptive edge-preserving smoothing preconditioning on impedance model. Geophysics, 2019, 84 (1): R11- R19.
Dong L , Song W Q , Hu J L , et al. A fault enhancing method based on dynamic time warping. Oil Geophysical Prospecting, 2021, 56 (3): 574- 582.
Du X , Li G F , Zhang M , et al. Multichannel band-controlled deconvolution based on a data-driven structural regularization. Geophysics, 2018, 83 (5): R401- R411.
Gholami A , Sacchi M D . Fast 3D blind seismic deconvolution via constrained total variation and GCV. SIAM Journal on Imaging Sciences, 2013, 6 (4): 2350- 2369.
Gholami A . Nonlinear multichannel impedance inversion by total-variation regularization. Geophysics, 2015, 80 (5): R217- R224.
Hamid H , Pidlisecky A . Multitrace impedance inversion with lateral constraints. Geophysics, 2015, 80 (6): M101- M111.
Hamid H , Pidlisecky A . Structurally constrained impedance inversion. Interpretation, 2016, 4 (4): T577- T589.
Karimi P. 2015. Structure-constrained relative acoustic impedance using stratigraphic coordinates. Geophysics, 80(3): A63-A67.
Lin Y Z , Huang L J . Acoustic-and elastic-waveform inversion using a modified total-variation regularization scheme. Geophysical Journal International, 2015, 200 (1): 489- 502.
Liu Y , Fomel S , Liu G C . Nonlinear structure-enhancing filtering using plane-wave prediction. Geophysical Prospecting, 2010, 58 (3): 415- 427.
Luo Y , Marhoon M , Al Dossary S , et al. Edge-preserving smoothing and applications. The Leading Edge, 2002, 21 (2): 136- 158.
Ma X , Li G F , Li H , et al. Multichannel absorption compensation with a data-driven structural regularization. Geophysics, 2020a, 85 (1): V71- V80.
Ma X , Li G F , Li H , et al. Stable absorption compensation with lateral constraint. Acta Geophysica, 2020b, 68 (4): 1039- 1048.
Scales J A , Gersztenkorn A . Robust methods in inverse theory. Inverse Problems, 1988, 4 (4): 1071- 1091.
Tan S J , Yu C Q , Nie F J , et al. Exploring the relationship between shallow sandstone-type uranium deposits and deep oil and gas in the Pengyang area of the Ordos Basin based on seismic data. Progress in Geophysics, 2025, 40 (2): 524- 540.
Tarantola A . Inversion of seismic reflection data in the acoustic approximation. Geophysics, 1984, 49 (8): 1259- 1266.
Tikhonov A N . Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl., 1963, 5: 1035- 1038.
Wang L Q , Zhou H , Wang Y F , et al. Three-parameter prestack seismic inversion based on L1-2 minimization. Geophysics, 2019, 84 (5): R753- R766.
Wang L Q , Zhou H , Liu W L , et al. Data-driven multichannel poststack seismic impedance inversion via patch-ordering regularization. Geophysics, 2021, 86 (2): R197- R210.
Wang S L , Liu C , Li P , et al. Stable and efficient seismic impedance inversion using quantum annealing with L1 norm regularization. Journal of Geophysics and Engineering, 2024, 21 (1): 330- 343.
Wang Y F , Ma X , Zhou H , et al. L1-2 minimization for exact and stable seismic attenuation compensation. Geophysical Journal International, 2018, 213 (3): 1629- 1646.
Wu X M. 2017. Structure-, stratigraphy-and fault-guided regularization in geophysical inversion. Geophysical Journal International, 210(1): 184-195.
Wu Y , Yuan J L , Xing X J , et al. Fast structurally constrained pre-stack seismic inversion and reservoir lithology identification. Progress in Geophysics, 2024, 39 (2): 867- 877.
Yang P J , Yin X Y . Non-linear quadratic programming Bayesian prestack inversion. Chinese Journal of Geophysics, 2008, 51 (6): 1876- 1882.
Yang P J , Mu X , Zhang J T . Orientational edge preserving fault enhance. Chinese Journal of Geophysics, 2010, 53 (12): 2992- 2997.
Yin X Y , Yang Y M , Li K , et al. Multitrace inversion driven by cross-correlation of seismic data. Chinese Journal of Geophysics, 2020, 63 (10): 3827- 3837.
Yuan S Y , Wang S X , Luo C M , et al. Simultaneous multitrace impedance inversion with transform-domain sparsity promotion. Geophysics, 2015, 80 (2): R71- R80.
Zhang H B , Yang C C . A constrained impedance inversion method controlled by regularized parameters. Chinese Journal of Geophysics, 2003, 46 (6): 827- 834.
Zhang R , Sen M K , Srinivasan S . A prestack basis pursuit seismic inversion. Geophysics, 2013, 78 (1): R1- R11.
Zhang X , Zhang J . Model regularization for seismic traveltime tomography with an edge-preserving smoothing operator. Journal of Applied Geophysics, 2017, 138: 143- 153.
Zhang Y P. 2020. Adaptive edge-preserving non-linear AVO inversion based on trivariate cauchy probability distribution[Master's thesis] (in Chinese). Beijing: China University of Petroleum.
Zhang Y P , Zhou H , Wang Y F , et al. A novel multichannel seismic deconvolution method via structure-oriented regularization. IEEE Transactions on Geoscience and Remote Sensing, 2022a, 60: 5910410
Zhang Y P , Wu W L , Zhang M Z , et al. Multitrace impedance inversion based on structure-oriented regularization. IEEE Geoscience and Remote Sensing Letters, 2022b, 19: 7503805
Zhang Y P , Zhang Q , Wang L Q , et al. Multichannel deconvolution based on adaptively directional TV regularization. Oil Geophysical Prospecting, 2024, 59 (6): 1269- 1279.
秋旭 , 俊兴 , 照东 , 等. 基于OVT域地震数据的多尺度裂缝预测方法及应用. 地球物理学进展, 2023, 38 (3): 1084- 1094.
, 维琪 , 建林 , 等. 动态时间规整的断层增强方法. 石油地球物理勘探, 2021, 56 (3): 574- 582.
顺佳 , 常青 , 逢君 , 等. 应用地震资料探讨鄂尔多斯盆地彭阳地区浅层砂岩型铀矿与深层油气关系. 地球物理学进展, 2025, 40 (2): 524- 540.
, 俊亮 , 希金 , 等. 基于快速构造约束的叠前地震反演及储层岩性识别方法. 地球物理学进展, 2024, 39 (2): 867- 877.
培杰 , 兴耀 . 非线性二次规划贝叶斯叠前反演. 地球物理学报, 2008, 51 (6): 1876- 1882.
培杰 , , 景涛 . 方向性边界保持断层增强技术. 地球物理学报, 2010, 53 (12): 2992- 2997.
兴耀 , 亚明 , , 等. 地震数据互相关驱动的多道反演方法. 地球物理学报, 2020, 63 (10): 3827- 3837.
宏兵 , 长春 . 正则参数控制下的波阻抗约束反演. 地球物理学报, 2003, 46 (6): 827- 834.
张元鹏. 2020. 基于三变量柯西分布的自适应边缘保护非线性AVO反演方法研究[硕士论文]. 北京: 中国石油大学.
元鹏 , , 玲谦 , 等. 应用自适应方向TV正则化的多道反褶积方法. 石油地球物理勘探, 2024, 59 (6): 1269- 1279.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(8846 KB)

Accesses

Citation

Detail

Sections
Recommended

/