Semi-supervised self-training velocity modeling approach based on SCConv-Unet

Bing ZHANG, YanXia SHI, LinXuan SONG, Ke ZHENG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1732-1747.

PDF(10237 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(10237 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (4) : 1732-1747. DOI: 10.6038/pg2025JJ0265

Semi-supervised self-training velocity modeling approach based on SCConv-Unet

Author information +
History +

Abstract

Interval velocity is a key parameter for obtaining high signal-to-noise ratio, high fidelity, and high-resolution seismic profiles. In recent years, with the help of the nonlinear mapping ability of deep learning, interval velocity modeling method based on seismic reflection waveform data of different types has development. However, current research is mainly focused on supervised learning, i.e., training a large number of "seismic waveform data-velocity model labeled" data pairs into the input network.This approach faces two drawbacks: first, the high cost and large amount of data for obtaining the actual subsurface velocity structure as a label, and second, the problem that the accuracy of velocity modeling depends directly on the nonlinear mapping ability of the neural network after supervised training.Therefore, in this paper, we propose a semi-supervised self-training velocity modeling method, which trains the initial supervised network with a small number of "seismic waveform data-velocity model label" data pairs, and then generates velocity pseudo-labels using unlabeled seismic waveform data. The "seismic waveform data-velocity model label" data pair and the "unlabeled seismic waveform data-velocity model pseudo-label" data pair are mixed to retrain the network and the velocity model pseudo-labels are iteratively updated using the new network model until the network model is updated by the velocity pseudo-label self-training, and then semi-supervised self-training is realized to improve the accuracy and generalization of the velocity modeling, accuracy and generalization.Meanwhile, in order to compress the spatial and channel redundancy in the convolutional neural network and to improve its performance, spatial and channel reconstruction convolution (SCConv) was used to construct the SCConv-Unet network.Finally, in order to verify that the semi-supervised self-training method is suitable for velocity modeling and can improve the accuracy of velocity modeling, numerical experiments are conducted using a fault velocity model, a horizontal laminar velocity model, and a velocity model containing velocity anomalies.The experimental results show that the accuracy of the semi-supervised self-training velocity modeling method can further improve the velocity modeling accuracy of the supervised learning method; making full use of the potential of the velocity-free labeled seismic waveform data can effectively improve the velocity modeling accuracy and reduce the cost of dataset production. In addition, the SCConv-Unet network shows good generalization ability and nonlinear mapping ability, which helps to accelerate the convergence speed of semi-supervised iterative training.

Key words

Deep learning / Seismic velocity modeling / Seismic velocity inversion / Semi-supervised self-training / SCConv-Unet network

Cite this article

Download Citations
Bing ZHANG , YanXia SHI , LinXuan SONG , et al. Semi-supervised self-training velocity modeling approach based on SCConv-Unet[J]. Progress in Geophysics. 2025, 40(4): 1732-1747 https://doi.org/10.6038/pg2025JJ0265

References

Araya-Polo M, Jennings J, Adler A, et al. Deep-learning tomography. The Leading Edge, 2018, 37(1): 58- 66.
Bi L F, Li Z R, Liu H N, et al. Study of semi-supervised learning for lithology prediction based on label propagation. Progress in Geophysics, 2021, 36(2): 540- 548.
Chen D W, Yang W Y, Wei X J, et al. Research on first-break automatic picking based on an improved U-Net network. Progress in Geophysics, 2021, 36(4): 1493- 1503.
Chen H L, Sacchi M D, Haghshenas Lari H, et al. Nonstationary seismic reflectivity inversion based on prior-engaged semisupervised deep learning method. Geophysics, 2023, 88(1): WA115- WA128.
Cheng M, Cao J X, You J C, et al. Automatic horizon tracking method based on image semantic segmentation. Progress in Geophysics, 2021, 36(4): 1504- 1511.
Di H B, Pham N, Abubakar A. Estimating geotechnical parameters using semisupervised learning: an example from the Dutch offshore wind farm zone. Geophysics, 2024, 89(1): WA85- WA93.
Fabien-Ouellet G, Sarkar R. Seismic velocity estimation: a deep recurrent neural-network approach. Geophysics, 2020, 85(1): U21- U29.
Jia L X, Mallick S, Sen S. 2021. Subsurface salt recognition via deep learning-An iterative semisupervised approach. //91st Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 1405-1409.
Jiang R, Li Z C, Sun X D. Recent research status of seismic data reconstruction by artificial intelligence methods. Progress in Geophysics, 2023, 38(5): 2047- 2062.
Li C Y, Zhu Y Z, Yang X, et al. Seismic data denoising method based on Noise-to-Noise self-supervised learning. Progress in Geophysics, 2023, 38(2): 662- 676.
Li W W, Gong R B, Zhou X G, et al. UNet++: a deep-neural-network-based seismic arrival time picking method. Progress in Geophysics, 2021, 36(1): 187- 194.
Liu M L, Jervis M, Li W C, et al. Seismic facies classification using supervised convolutional neural networks and semisupervised generative adversarial networks. Geophysics, 2020, 85(4): O47- O58.
Liu Y M, Liu Y, Zhang Y, et al. Video abnormal detection by fusing spatial and channel reconstruction convolution and attention mechanism. Control Engineering of China, 2024,
Luo R, Chen H Z, Wang B F. Semisupervised seismic impedance inversion with data augmentation and uncertainty analysis. Geophysics, 2023, 88(4): M213- M224.
Ma X Y. 2024. Research on seismic velocity field modeling method based on deep learning[Master's thesis](in Chinese). Daqing: Northeast Petroleum University.
Ma X Y, Zhang B, Xu J L, et al. Velocity field modeling method based on deep learning. Progress in Geophysics, 2024, 39(1): 162- 173.
Mirzakhanian M, Hashemi H. Semisupervised fuzzy clustering for facies analysis using extended elastic impedance seismic attributes. Geophysics, 2022, 87(4): N75- N84.
Park M J, Sacchi M D. Automatic velocity analysis using convolutional neural network and transfer learning. Geophysics, 2020, 85(1): V33- V43.
Qin N, Li Z C, Sang Y Y, et al. The research of travel time tomographic velocity modeling method on first break. Progress in Geophysics, 2014, 29(1): 255- 260.
Saleem A, Choi J, Yoon D, et al. 2019. Facies classification using semi-supervised deep learning with pseudo-labeling strategy. //89th Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 3171-3175.
Shuo L X, Zhao Y H, Chai B F, et al. Semi-supervised adversarial network for seismic facies classification. Progress in Geophysics, 2023, 38(5): 2105- 2113.
Suri J S, Bhagawati M, Agarwal S, et al. UNet deep learning architecture for segmentation of vascular and non-vascular images: a microscopic look at UNet components buffered with pruning, explainable artificial intelligence, and bias. IEEE Access, 2023, 11: 595- 645.
Wu S L, Geng J H. 2023. Joint data and physics model driven full-waveform inversion using CMP gathers and well-logging data. //93rd Ann. Internat Mtg., Soc. Expi. Geophys. . Expanded Abstracts, 640-644.
Xu J L, Zhang B. One method of irregular grid tomography velocity modeling based on horizon constraint. Progress in Geophysics, 2020, 35(2): 669- 673.
Xu X, Zou Z H, Han M L, et al. Deep-learning velocity model building by jointly using seismic first arrivals and early-arrival waveforms. Chinese Journal of Geophysics, 2023, 66(12): 5107- 5122.
Yi J D, Zhang M, Li Z C, et al. Review of deep learning seismic data reconstruction methods. Progress in Geophysics, 2023, 38(1): 361- 381.
Yin S T, Lin X C, Zhang Z F, et al. A class-rebalancing self-training semisupervised learning for imbalanced data lithology identification. Geophysics, 2024, 89(1): WA1- WA11.
Zhang B. Automatic seismic interval velocity building based on convolutional neural network and velocity spectrum. Geophysical Prospecting for Petroleum, 2021, 60(3): 366- 375.
Zou J B, Liu C, Zhao P F, et al. Seismic wavefields modeling with variable horizontally layered velocity models via velocity-encoded PINN. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4507611
丽飞, 泽瑞, 海宁, 等. 基于标签传播的岩性预测半监督学习算法研究. 地球物理学进展, 2021, 36(2): 540- 548.
德武, 午阳, 新建, 等. 一种基于改进的U-Net网络的初至自动拾取研究. 地球物理学进展, 2021, 36(4): 1493- 1503.
, 俊兴, 加春, 等. 基于图像语义分割的层位自动追踪方法. 地球物理学进展, 2021, 36(4): 1504- 1511.
明亮, 志辉, . 利用反射地震资料和多尺度训练集的深度学习速度建模. 石油地球物理勘探, 2021, 56(5): 935- 946.
, 振春, 小东. 人工智能地震数据重建方法现状分析. 地球物理学进展, 2023, 38(5): 2047- 2062.
从昀, 亚洲, , 等. 基于Noise-to-Noise自监督学习的地震数据去噪方法. 地球物理学进展, 2023, 38(2): 662- 676.
薇薇, 仁彬, 相广, 等. 基于深度学习UNet++网络的初至波拾取方法. 地球物理学进展, 2021, 36(1): 187- 194.
拥民, , , 等. 融合SCConv和注意力机制的视频异常检测方法. 控制工程, 2024,
马新月. 2024. 基于深度学习的地震速度场建模方法研究[硕士论文]. 大庆: 东北石油大学.
新月, , 嘉亮, 等. 基于深度学习的速度场建模方法. 地球物理学进展, 2024, 39(1): 162- 173.
, 振春, 运云, 等. 初至波走时层析速度建模方法研究. 地球物理学进展, 2014, 29(1): 255- 260.
良勋, 云鹤, 变芳, 等. 基于半监督对抗网络的地震相识别. 地球物理学进展, 2023, 38(5): 2105- 2113.
嘉亮, . 基于层位约束的不规则网格层析速度建模方法. 地球物理学进展, 2020, 35(2): 669- 673.
, 志辉, 明亮, 等. 联合地震初至走时与早至波形的深度学习速度建模. 地球物理学报, 2023, 66(12): 5107- 5122.
继东, , 振春, 等. 深度学习地震数据重建方法研究综述. 地球物理学进展, 2023, 38(1): 361- 381.
. 基于卷积神经网络和叠加速度谱的地震层速度自动建模方法. 石油物探, 2021, 60(3): 366- 375.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(10237 KB)

Accesses

Citation

Detail

Sections
Recommended

/