Spiro-Type Small Molecule Hole Transport Materials in Perovskite Solar Cells
Received date: 2023-10-15
Revised date: 2023-12-28
Online published: 2024-02-07
Supported by
National Key R&D Program of China(2020YFB1506400)
National Natural Science Foundation of China(61904053)
National Natural Science Foundation of China(22279033)
111 project(B16016)
Special Foundation for Carbon Peak Carbon Neutralization Technology Innovation Program of Jiangsu Province(BE2022026)
the performance of hole transport materials significantly influences the hole transport and electron-hole recombination in perovskite solar cells,which in turn affects the cells'efficiency.the spiro-type structure has a unique orthogonal molecular conformation.this makes the molecules form good contact on the perovskite film easily.It also leads to uniform charge transport characteristics and a higher glass transition temperature.this material has been widely used as a highly efficient hole transport material skeleton unit in perovskite solar cells.This paper summarizes the advancements in spiro-type hole transport materials,focusing primarily on the optimization of terminal functional groups and spiro-type core regulation in spiro-type small molecule materials.It discusses how changes in molecular structure impact the material’s photophysics,electrochemistry,thermal stability,hole transport characteristics,and overall performance in perovskite solar cells.Additionally,This paper forecasts future developments in This area,examining the trends and research directions of high-performance spiral-type hole transport materials。
1 Introduction
2 Spiro-type hole transporting materials
2.1 Optimization of terminal groups of spiro-type small molecule HTM
2.2 Molecular nuclear regulation of spiro-type small molecule HTM
3 Conclusion and outlook
Ying Zhou , Xuepeng Liu , Xianfu Zhang , Mingyuan Han , Jianlin Chen , Yongpeng Liang , Botong Li , Yong Ding , Molang Cai , Songyuan Dai . Spiro-Type Small Molecule Hole Transport Materials in Perovskite Solar Cells[J]. Progress in Chemistry, 2024 , 36(5) : 613 -632 . DOI: 10.7536/PC231006
表1 Photovoltaic performance parameters of end-optimized spiro HTMs in PSCs.Table 1 Photovoltaic performance parameters of terminal optimized spiral HTMs in PSCs |
HTM | perovskite | HOMO (eV) | μ (×10-4 cm2·V-1·s-1) | Voc (V) | Jsc (mA·cm-2) | FF (%) | PCE (%) | Ref |
---|---|---|---|---|---|---|---|---|
po-spiro-OMeTAD | MAPbI3 | -5.22 | NRa | 1.02 | 21.2 | 77.6 | 16.7 | 51 |
2,4-spiro-OMeTAD | MAPbI3 | -5.24 | NR | 0.956 | 25.6 | 70.1 | 17.2 | 54 |
spiro-cyclOMe | Cs0.05FA0.95PbI3 | -5.09 | 22.5 | 1.18 | 24.86 | 79 | 23.10 | 55 |
spiro-S | MAPbI3 | -4.92 | 0.126 | 1.06 | 19.15 | 78 | 15.92 | 56 |
spiro-OSMeTAD | Cs0.05(FA0.85MA0.15)0.95 Pb(I0.85Br0.15)3 | -5.18 | NR | 1.16 | 22.81 | 76 | 20.18 | 57 |
SF48b | Cs0.05(FA0.85MA0.15)0.95 Pb(I0.89Br0.11)3 | -4.83 | 0.17 | 1.09 | 22.6 | 76 | 18.7 | 58 |
spiro-mFc | FAPbI3 | -5.19 | 74.7 | 1.16 | 26.35 | 80.9 | 24.82 | 59 |
spiro-4TFETAD | (FAPbI3)0.97(MAPbBr3)0.03 | -5.32 | 2.04 | 1.17 | 24.31 | 74.26 | 21.11 | 60 |
spiro-OEtTADc | MAPbI3 | -5.09 | 4.76×10-5 | 1.11 | 23.93 | 75.65 | 20.16 | 61 |
spiro-TTB | MAPbI3 | -5.3 | 19.7 | 1.07 | 22.02 | 78 | 18.38 | 62 |
spiro-Me-2 | CsFA0.9Pb(I0.9Br0.1)3 | -4.55 | about 50 | 1.109 | 22.57 | 68.7 | 17.2 | 63 |
Spiro-Acid | Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 | -5.02 | NR | 0.99 | 22.20 | 82.6 | 18.15 | 64 |
DM | (FAPbI3)0.95(MAPbBr3)0.05 | -5.27 | NR | 1.14 | 24.9 | 81 | 23.2 | 65 |
SC | (CsPbI3)x(FAPbI3)y(MA PbBr3)1-x-y | -5.26 | 31.5 | 1.15 | 23.47 | 80.62 | 21.76 | 66 |
spiro-DBF | (CsPbI3)0.05(FAPbI3)0.95 | -5.22 | 63.1 | 1.12 | 24.21 | 79 | 21.43 | 67 |
V1267 | (FAPbI3)0.87(MAPbBr3)0.13 | 6.96 | 1.06 | 23.41 | 74 | 18.3 | 68 | |
spiro-carbazole | Cs0.05FA0.95PbI3 | -5.15 | 64.8 | 1.18 | 24.56 | 76 | 22.01 | 69 |
SBF-FC | FAPbI3 | -5.06 | 0.12 | 1.18 | 25.9 | 80.9 | 24.7 | 70 |
spiro-Naphc | FAPbI3 | -5.05 | 80.84 | 1.16 | 25.97 | 80.67 | 24.43 | 71 |
spiro-O27 | MAPbI3 | -5.16 | 49.96 | 1.07 | 22.07 | 70 | 16.6 | 72 |
DP | Cs0.05MA0.05FA0.9PbI3 | -5.18 | 51.9 | 1.138 | 26.13 | 84.9 | 25.24 | 73 |
spiro-tBuBED | MAPbI3 | -5.3 | 2.29 | 1.102 | 22.99 | 73.5 | 18.6 | 74 |
spiro-OMeIm | (FAPbI3)0.85(MAPbBr3)0.15 | -5.13 | 2.2 | 1.10 | 20.46 | 76 | 17.10 | 75 |
V1307 | [(FAPbI3)0.87(MAPbBr3)0.13]0.92 (CsPbI3)0.08 | -5.46 | 1.4 | 1.073 | 23.21 | 77 | 19.2 | 35 |
CF-Sp-BTh | GO(0.5wt%)-MAPbI3 | -5.38 | 96.5 | 1.07 | 18.82 | 71 | 14.28 | 76 |
spiro-PTb | MAPbBr3 | -5.66 | 1.68 | 1.41 | 7.42 | 75.23 | 7.36 | 77 |
aNR=not reported ; bDopant-free ; cThe hole mobility of the HTM is obtained through the ITO/PEDOT:PSS/perovskite/HTM/Au structure 。 |
图5 对spiro-OMeTAD末端甲氧基调控、引入烷基或杂原子官能团调控的HTMs分子结构Fig. 5 Molecular structures of HTMs regulated by terminal methoxy modulation of spiro-OMeTAD, introduction of alkyl or heteroatom functional groups |
图6 采用苯并(杂)环替代spiro-OMeTAD末端苯甲醚的分子结构图Fig. 6 Molecular structures of spiro-OMeTAD-terminated anisole using benz(hetero)ring substitution |
图9 以SFX作为核心或连接基团的HTMs的分子结构Fig. 9 Molecular structures of HTMs with SFX as the core or connecting group |
表2 Photovoltaic performance parameters of HTMs with SFX as core or linking groupTable 2 Photovoltaic performance parameters of HTMs with SFX as core or linking group |
HTM | perovskite | HOMO (eV) | μ (×10-4 cm2·V-1·s-1) | Voc (V) | Jsc (mA·cm-2) | FF (%) | PCE (%) | Ref |
---|---|---|---|---|---|---|---|---|
X59 | (FAPbI3)1-x(MA PbBr3)x | -5.15 | 0.55 | 1.13 | 23.4 | 73 | 19.8 | 79 |
X60 | (FAPbI3)1-x(MA PbBr3)x | -5.15 | 1.9 | 1.14 | 24.2 | 71 | 19.84 | 37 |
X55 | FA0.85MA0.15Pb (I0.85Br0.15)3 | -5.23 | 6.81 | 1.15 | 23.4 | 77 | 20.8 | 82 |
X26 | FA0.85MA0.15Pb (I0.85Br0.15)3 | -5.08 | 4.31 | 1.11 | 24.3 | 75 | 20.2 | 83 |
HTM-FX’ | Cs0.05FA0.81MA0.14 PbI2.55Br0.45 | -5.16 | 4.8 | 1.17 | 21.7 | 78 | 20.8 | 80 |
SFXDAnCBZ | (FAPbI3)0.95(MA PbBr3)0.05 | -4.945 | 4.28 | 1.09 | 23.1 | 83 | 20.87 | 84 |
M6-F | MA0.16FA0.84PbI3 | -4.99 | 2.1 | 1.154 | 24.45 | 78.56 | 22.17 | 85 |
mCl-SFXDA | Cs0.05FA0.75MA0.20 Pb(I0.96Br0.04)3 | -5.18 | 1.6 | 1.14 | 25.25 | 75.21 | 21.34 | 86 |
SFX-3 | FAPbI3 | -5.28 | 4.86 | 1.16 | 25.64 | 75.51 | 22.42 | 87 |
图10 核心单元含有噻吩或羰基的HTMs的分子结构Fig. 10 Molecular structures of HTMs with thiophene or carbonyl group as the core unit |
图11 其他螺旋核调控的HTMs的分子结构Fig. 11 Molecular structures of HTMs regulated by other spiral cores |
表3 Photovoltaic Performance Parameters of Novel Spiro-cored HTMsTable 3 Photovoltaic performance parameters of HTMs with new spiral cores |
HTM | perovskite | HOMO (eV) | μ (×10-4 cm2·V-1·s-1) | Voc (V) | Jsc (mA·cm-2) | FF (%) | PCE (%) | Ref |
---|---|---|---|---|---|---|---|---|
SCPDT-BiT | MAPbI3 | -5.07 | 0.595 | 0.939 | 16.54 | 67 | 10.39 | 88 |
FDT | (FAPbI3)1-x(MAPbBr3)x | -5.16 | NRa | 1.148 | 22.7 | 76 | 20.2 | 89 |
HTM-1 | (CsI)0.05(FAPbI3)0.90 (MAPbBr3)0.10 | -5.01 | 4.5 | 1.10 | 24.7 | 77 | 21.0 | 90 |
Yih-2 | MAPbI3 | -5.35 | 0.496 | 1.02 | 22.18 | 71 | 16.06 | 91 |
NiOx/MS-OC | MAPbI3 | -5.34 | 0.727 | 1.128 | 22.34 | 80.8 | 22.34 | 92 |
spiro-1 | Cs0.05MA0.2FA0.75Pb(Br0.05I0.95)3 | -5.25 | 8.93 | 1.10 | 24.91 | 79.1 | 21.67 | 93 |
spiro-BC-OMe | FA1-xMAxPbI3-yBry | -5.13 | 4.13 | 1.11 | 24.98 | 80.11 | 22.15 | 94 |
DH1 | MAPbI3 | -5.22 | 25.8 | 1.04 | 22.56 | 74 | 17.13 | 95 |
SAF-OMe | CH3NH3PbI3−xClx | -5.07 | 9.9 | 1.05 | 21.07 | 76 | 16.73 | 96 |
PPyra-TXA | MAPbI3 | -5.23 | 0.914 | 1.10 | 20.6 | 79.7 | 18.06 | 97 |
MeSBA-DMPA | (FAPbI3)0.85(MAPbBr3)0.15 | -4.94 | 0.498 | 1.063 | 22.75 | 75.3 | 18.21 | 98 |
spiro-CN-OMeTAD | (FAPbI3)0.84(MAPbBr3)0.16 | -5.16 | 10.4 | 1.16 | 21.97 | 78.08 | 19.09 | 99 |
DFHb | MA0.9FA0.1PbI3-xClx | -5.27 | 10 | 1.10 | 22.6 | 82.9 | 20.6 | 100 |
Dispiro-OBuTAD | MAPbI3 | -5.16 | 57.3 | 1.08 | 22.79 | 75 | 18.46 | 101 |
G2 | FA0.85MA0.15Pb(I0.85Br0.15)3 | -5.22 | 3.58 | 1.13 | 23.52 | 76 | 20.2 | 102 |
Si-Spiro-MeOTAD | FAPbI3 | -4.88 | 1.86 | 1.12 | 25.9 | 77.1 | 22.5 | 103 |
aNR=not reported ; bDopant-free |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
(王爱丽, 汪舒蓉, 林红, 丁黎明, 郝锋. 硅酸盐学报, 2021, 49(7): 1306.).
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
(邵将洋, 钟羽武. 有机化学, 2021, 41(04): 1447.).
|
[24] |
(刘雪朋, 孔凡太, 陈汪超, 于婷, 郭福领, 陈健, 戴松元. 物理化学学报, 2016, 32(6): 1347.).
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
(刘庆琳, 任保轶, 孙亚光, 解令海, 黄维. 化学学报, 2021, 79(10): 1181.).
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
/
〈 |
|
〉 |