Application of Non-Precious Transition Metal Catalyst in Electrocatalytic Nitrogen Synthesis of Ammonia
Received date: 2024-01-29
Revised date: 2024-03-06
Online published: 2024-07-01
As an important chemical product and chemical raw material,ammonia is widely used in industry,agriculture,medicine and other industries,and plays an irreplaceable role in global economic development.At present,industrial ammonia synthesis mainly uses the traditional Haber-Bosch process,which consumes a lot of fossil energy and has a relatively low equilibrium conversion rate.Electrocatalytic nitrogen reduction of ammonia synthesis can convert N2and H2O into NH3at normal temperature and pressure,and it is easy to operate and easy to obtain raw materials,which has become an important research direction in the scientific research field.Among them,non-precious metal transition metal-based oxides,nitrides,sulfides,bimetal catalysts and heteroatom-based catalysts represented by transition metals in zone d showed good catalytic performance.This paper focuses on the recent progress of electrocatalytic ammonia production by transition metal-based electrocatalytic nitrogen reduction reaction(E-NRR),including its challenges,reaction mechanism,and different materials of E-NRR catalysts,and focuses on the structure-performance relationship.The strategies and prospects for improving the performance of E-NRR were introduced from the aspects of synthesis scheme,structure modification,activity,selective enhancement and reaction mechanism 。
Siyu Liu , Yike Wei , Yu Tan , Weiming Yuan , Kexin Liang , Shenghan Zhang . Application of Non-Precious Transition Metal Catalyst in Electrocatalytic Nitrogen Synthesis of Ammonia[J]. Progress in Chemistry, 2024 , 36(8) : 1134 -1144 . DOI: 10.7536/PC240124
表1 Mo-based electrocatalytic NRR catalyst[26⇓⇓⇓⇓⇓⇓⇓⇓⇓~36]Table 1 Mo-based electrocatalytic NRR catalysts[26⇓⇓⇓⇓⇓⇓⇓⇓⇓~36] |
Catalyst | Electrolyte | NH3 yield | FE(%) | Potential | Ref |
---|---|---|---|---|---|
MoS3 | 0.5 M LiClO4 | 51.7 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 12.8 | -0.3 V vs. RHE | 30 |
Vo-MoO2@C | 0.5 M Na2SO4 | 9.75 μg·h-1·mg-1 | 3.24 | -0.5 V vs. RHE | 28 |
Mo−(O−C2)4 | 0.1 M Na2SO4 | ~248.6 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | ~43.8 | -0.2 V vs. RHE | 29 |
VS-MoS2 | 0.1 M Na2SO4 | 29.55 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 4.58 | -0.3 V vs. RHE (ammonia yield) -0.2 V vs. RHE (FE) | 31 |
FeS2-MoS2@IFx | 0.1 M KOH | 7.1×10-10 mol·s-1·cm-2 | 4.6 | −0.5 V vs. RHE (ammonia yield) −0.3 V vs. RHE (FE) | 36 |
MoO2@MoO3 | 0.05 M H2SO4 | 60.9 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 23.8 | −0.35 V vs. RHE | 27 |
vulcanized FeMoO4 | 0.1 M Na2SO4 | 31.93 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 30.9 | −0.39 V vs. RHE | 34 |
SM-MoS2−x | 0.05 M H2SO4 | 17.2 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 24.7 | −0.2 V vs. RHE | 32 |
MoS | 0.1 M K2SO4 | 43.4±3 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 16.8 | −0.3 V vs. RHE | 33 |
1T/2H-MoSx | 0.1M Na2SO4 | 93.2 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 20.5 | −0.4 V vs. RHE | 35 |
Mo3Si | 0.1 M Na2SO4 | 2×10-10mol·s-1·cm-2 | 6.69 | −0.4 V vs. RHE (ammonia yield) −0.3 V vs. RHE (FE) | 26 |
表2 Co-based and Ni-based electrocatalytic NRR catalyst[37⇓⇓⇓⇓~42,44⇓⇓⇓⇓⇓⇓⇓⇓ ~53]Table 2 Co-and Ni-based electrocatalytic NRR catalysts[37⇓⇓⇓⇓~42,44⇓⇓⇓⇓⇓⇓⇓⇓ ~53] |
Catalyst | Electrolyte | NH3 yield | FE (%) | Potential | Ref |
---|---|---|---|---|---|
CoS | 0.05 M H2SO4 | (12.1±1.4) μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 16.5±1.5 | -0.15 V vs. RHE | 44 |
CoS2/MoS2 | 1.0 M K2SO4 | 38.61 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 34.66 | -0.25 V vs. RHE | 45 |
Co3O4 nanoparticle | 0.1 M Na2SO4 | 235.0 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 16.3 | -0.3 V vs. RHE | 46 |
CoMoO4 nanorod | 0.1 M Na2SO4 | 79.87 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 22.76 | -0.1 V vs. RHE | 47 |
CoPi/HSNPC | 1.0 M KOH | 16.48 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 4.46 | -0.2 V vs. RHE | 48 |
Zn-Co3O4-10 | 0.1 M HCl | 22.71 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 11.9 | -0.3 V vs. RHE | 49 |
Co-NC/MoS2 | 0.1 MHCl | 54.66 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 34.49 | -0.2 V vs. RHE | 41 |
β-CoPc NTs | 0.1M HCl | 107.9 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 27.7 | -0.3 V vs. RHE | 42 |
BiNPs@NF | 0.5 M K2SO4 | 9.3×10-11 mol·s-1·cm-2 | 6.3 | -0.5 V vs. RHE | 40 |
Ni@MX | 0.1 M KOH | 21.29 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 14.86 | — | 37 |
NiS@MoS2 | 0.1 M Na2SO4 | 9.66 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 14.8 | -0.3 V vs. RHE (ammonia yield) -0.1 V vs. RHE (FE) | 50 |
Ni/NiFeOH | 0.5 M KOH | 19.74 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 23.34 | -0.15 V vs. RHE | 51 |
NiSb | 0.1 M HCl | 56.9 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 48.0 | -0.2 V vs. RHE | 38 |
NiPc NRs | 0.1 M HCl | 85 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 25 | -0.3 V vs. RHE | 39 |
NiFe-LDH | 0.1 M KOH | 19.44 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 19.41 | -0.2 V vs. RHE | 52 |
V-NiS2 | 0.1 M | 47.63 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 9.37 | -0.45 V vs. RHE (ammonia yield) -0.35 V vs. RHE (FE) | 53 |
表3 Fe-based electrocatalytic NRR catalyst[57⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~71]Table 3 Fe based electrocatalytic NRR catalysts[57⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~71] |
Catalyst | Electrolyte | NH3 yield | FE(%) | Potential | Ref. |
---|---|---|---|---|---|
C@CoFe2O4−x | 0.1 M Na2SO4 | 30.97 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 11.65 | −0.4 V vs. RHE | 67 |
FeTe2/RGO | 0.5 M LiClO4 | 39.2 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 18.1 | −0.5 V vs. RHE (ammonia yield) −0.3 V vs. RHE (FE) | 58 |
Fe3O4 | 0.1 M Na2SO4 | 12.09 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 16.9 | −0.15 V vs. RHE | 64 |
Fe3O4 | 0.1 M Na2SO4 | 12.09 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 34.38 | −0.1 V vs. RHE | 63 |
a-FeB2PNS | 0.5 M LiClO4 | 39.8 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 16.7 | −0.3 V vs. RHE (ammonia yield) −0.2 V vs. RHE (FE) | 59 |
Fe(III)-MoO3 | 0.1M Na2SO4 | 9.66 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 13.1 | −0.6 V vs. RHE | 68 |
FeHTNs | 0.1M Na2SO4 | 43.14 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 16.35 | −0.7 V vs. RHE | 60 |
Fe-InVO4 | 0.1M HCl | 17.23 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 14.27 | −0.4 V vs. RHE | 61 |
Fe-BMO | 0.1M HCl | 71.01 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 80.12 | −0.1 V vs. RHE | 57 |
Nano-Fe | 1.0 M K3PO4 | 79.0±5×10−11 mol·s−1·cm−2 | 16.68 | − | 66 |
0.50Fe-Bi2WO6 | 0.05 M H2SO4 | 289 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 1.96 | −0.75 V vs. RHE | 62 |
F-Fe:TiO2 | 0.05 M H2SO4 | 27.86 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 27.67 | −0.5 V vs. RHE | 69 |
Fe3O4-70/NiB-CP | 0.1 M KOH | 245 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 4.32 | −0.1 V vs. RHE | 65 |
Zn-Fe2O3 | 0.1 M Na2SO4 | 15.1 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 10.4 | −0.5 V vs. RHE | 70 |
V-Fe2O3 | 0.1 M HCl | 68.7 μg·h−1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 5.7 | −0.2 V vs. RHE | 71 |
表4 Other transition metal-based electrocatalytic NRR catalysts[66⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~82].Table 4 Other transition metal-based electrocatalytic NRR catalysts[66⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~82] |
Catalyst | Electrolyte | NH3 yield | FE(%) | Potential | Ref. |
---|---|---|---|---|---|
ZrO2@C | 0.1 M Na2SO4 | 6.72 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 2.68 | −0.6 V vs. RHE | 73 |
ZrO2 | 0.1 M Na2SO4 | 9.63 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 12.1 | −0.7 V vs. RHE | 72 |
Cu-ZrO2 | 0.1 M Na2SO4 | 12.13 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 13.4 | −0.6 V vs. RHE | 74 |
UiO-Zr-Ti | 0.1 M Na2SO4 | 1.16×10-10 mol·s-1·cm-2 | 80.36 | −0.3 V vs. RHE | 80 |
Ti2O3 | 0.1 M HCl | 26.01 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 9.16 | −0.25 V vs. RHE | 75 |
Ag/TiO2 | 0.1 M HCl | 3.158×10-10 mol·s-1·cm-2 | 0.13 | −0.6 V vs. RHE | 76 |
Sn-TiO2 | 0.1 M KOH | 10.5 μg·h-1·cm-2 | 8.36 | −0.45 V vs. RHE | 77 |
ZIF-67@Ti3C2 | 0.1 M KOH | 6.52 μmol·h-1·cm-2 | 20.2 | −0.4 V vs. RHE | 83 |
VN@NSC | 0.1 M HCl | 20.5 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 8.6 | −0.3 V vs. RHE | 79 |
V3O7·H2O | 0.1 M Na2SO4 | 36.42 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 14.2 | −0.55 V vs. RHE | 78 |
Cu0·1CeO2@NC | 0.1 M Na2SO4 | 44.5 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 34.6 | −0.5 V vs. RHE | 84 |
Cu2-xS/MoS2 | 0.1 M Na2SO4 | 22.1 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 6.06 | −0.5 V vs. RHE | 81 |
np-CuMn | 0.1 M Na2SO4 | 28.9 μg·h-1·cm-2 | 9.83 | −0.3 V vs. RHE | 85 |
Cu@Ce-MOF | 0.1 M KOH | 14.83 μg·h-1·cm-2 | 10.81 | −0.2 V vs. RHE | 82 |
CuO NA/CF | 0.1 M Na2SO4 | 1.84×10−9 mol·s-1·cm-2 | 18.2 | −0.1 V vs. RHE | 86 |
Cu9S5/NC | 0.5 M Na2SO4 | 10.8±0.4 μg·h-1·cm-2 | 5±3 | −0.5 V vs. RHE | 87 |
Cu-Nb2O5@C | 0.1 M HCl | 28.07 μg·h-1·$\mathrm{mg}_{\text {cat }}^{-1}$ | 13.25 | −0.2 V vs. RHE | 88 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
(王铃. 石油炼制与化工, 2020, 51(2): 80.)
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
(刘恒源, 王海辉, 徐建鸿. 化工学报, 2022, 73(01): 32.)
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
(陈全亮, 周朝晖. 大学化学, 2024, 2310133.)
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
/
〈 |
|
〉 |