Preparation and Application of Inorganic Persistent Luminescent Composite Materials
Received date: 2023-12-28
Revised date: 2024-03-11
Online published: 2024-06-28
Supported by
Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01E16)
National Natural Science Foundation of China(22364016)
Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2023D14002)
persistent luminescent materials are photoluminescent materials that store energy when exposed to light and slowly release it as light when the light source is removed.Among them,the inorganic persistent luminescent materials because of its unique characteristics of long afterglow luminescence that make them useful in various fields,including data storage,information technology,photocatalysis,and biomedicine.Researchers have developed multifunctional composites based on inorganic persistent luminescent materials to enhance their properties and functions.However,there is still a lack of a systematic and comprehensive review of inorganic persistent luminescent composite materials.This paper summarizes the preparation methods of inorganic persistent luminescent composites,combining recent literature reports on inorganic persistent luminescent composites and the research work of our group,and then focuses on the progress of the research and application of inorganic persistent luminescent composites in photocatalysis,biomedicine and anti-counterfeiting.Finally,the opportunities and challenges for the practical application of inorganic persistent luminescent composites are analyzed from a prospective point of view。
Contents
1 Introduction
2 Preparation of persistent luminescent composite materials
2.1 Load type
2.2 Core-shell type
2.3 Dumbbell type
3 Application of persistent luminescent composite materials
3.1 Photocatalysis
3.2 Biomedical
3.3 Anti-counterfeiting
4 Conclusion and outlook
Lukman Kasim , Boyuan Li , Abdukader Abdukayum . Preparation and Application of Inorganic Persistent Luminescent Composite Materials[J]. Progress in Chemistry, 2024 , 36(8) : 1254 -1268 . DOI: 10.7536/PC231210
表1 Applications of Long Afterglow Composite Nanomaterials in Photocatalysis, Biomedicine and Anti-counterfeitingTable 1 Application of persistent luminescent nanocomposites in photocatalysis,biomedicine,anti-counterfeiting |
Composite nanomaterials | Excitation/nm | Emission/nm | Applications | Ref |
---|---|---|---|---|
CdS/SrAl2O4:Eu2+, Dy3+ PLNPs/MOFs | >420 254 | 510 535 | Degradation MO Degradation RhB | 30 31 |
g-C3N4-Au@SrAl2O4:Eu2+, Dy3+ Sr2MgSi2O7:(Eu,Dy)/CdS PEI-PLNPs/Ab-AuNPs ZnGa2O4:Cr@MPA@Au PLNPs-CPBA-gel | >420 365 254 254 410 | 510 470 ~510 695 698 | Hydrogen evolution Hydrogen evolution Detection of tumor markers Detection of tumor markers Detection of tumor markers | 32 33 48 49 50 |
Apt-PLNPs@cDNA-Fe3O4 | 254 | 537, 701 | Detection of ZEN and AFB1 | 51 |
ZGC/HZIF-8 | 254 | 700 | Detection of dopamine | 52 |
PLNPs@UCNPs PLNPs@SiO2@MnO2 Gd(III)-PLNPs | 980 254 254 254 | 700 702 700 | Optical imaging Optical imaging Dual-modal imaging | 57 58 64 |
PLNPs-Gd2O3-HA ZGGO@TaOx@SiO2 Gd2O3@mSiO2@CaTiO3:Pr3+ Gd2O3@mSiO2/ZnGa2O4:Cr3+, Bi3+ | 254 270 327 254 | 700 695 613 695 | Dual-modal bioimaging Dual-modal bioimaging Dual-modal bioimaging Dual-modal bioimaging | 65 66 67 68 |
Mn-ZGOCS-PEG GdAlO3:Mn4+, Ge4+@Au PLNPs@ZIF-8 PLNPs@MIL-100(Fe) PLNP@UIO-66 PLNP@GNR | 254 254 254 254 254 635 | 695 690, 713 699, 696 700 697 697 | Dual-modal bioimaging Tri-modal bioimaging Drug delivery Bioimaging Drug delivery Bioimaging Drug delivery Biomaging Photothermal therapy | 69 70 76 77 81 84 |
PLNP-Bi2S3 | 635 | 697 | Photothermal therapy | 85 |
NaYF4:Yb,Tm@SrAl2O4:Eu,Dy S-PLNP@MnO2-PSMD | 980 273 | ~510 697 | Photodynamic therapy Photodynamic therapy | 86 87 |
Zn1.05Ga1.9O4:Cr@SiO2@MOF | 254 | 696 | Combination therapy | 88 |
LiLuGeO4:Bi3+/TiO2 | 254 | ~385 | Treatment of bacterial infections | 109 |
CsPbBr3/SMS@SiO2 CsPbI3-CsPbBr3/SMS@SiO2 CDs/CAO NaYF4:Yb,Tm/ ZGO:Mn,Li Sr2ZnSi2O7:Eu2+, Dy3+/PAN | 365 365 310 365 360 | 465, 525 460, 680 ~650 540 470 | Anti-counterfeiting Anti-counterfeiting Anti-counterfeiting Anti-counterfeiting Anti-counterfeiting | 120 121 122 123 124 |
表2 Comparison of Photocatalytic Hydrogen Evolution Rate between Long Afterglow Composite and Other Mainstream MaterialsTable 2 Comparison of photocatalytic hydrogen evolution rates between PLNPs composite materials and other mainstream materials |
Photocatalysts | Light source | Performance for H2 production | Ref |
---|---|---|---|
Sr2MgSi2O7:(Eu, Dy)/CdS | 300 W Xe | Light: 18.07 mmol·g-1 in 0.5 h Dark: 6.31 mmol·g-1 lasting 4 h | 33 |
Ru1/TiO2 CuO/CdS | 300 W Xe λ>420 nm 300 W Xe λ>420 nm | Light: 8.95 mmol· h-1·g-1 Dark: 0 Light: 3317.5 μmol·h−1·g−1 Dark: 0 | 34 35 |
ZnIn2S4/g-C3N4 | 300 W Xe λ>420 nm | Light: 6095.1 μmol·h−1·g−1 Dark: 0 | 36 |
ZnCo2S4/MOF-199 | 300 W Xe | Light: 11.6 mmol·h-1·g-1 Dark: 0 | 37 |
MoS2/RGO | 350 W Xe | Light: 667.2 μmol·h−1·g−1 | 38 |
Dark: 0 |
图5 (a)传统的紫外光充电PL成像和NIR光充电UCPL成像[57];(b)使用PLNPs/MnO2复合材料进行体内超灵敏成像[58];(c)小鼠注入多模态复合纳米探针GdAlO3:Mn4+,Ge4+@Au后的体内成像[70]Fig. 5 (a)Traditional UV-light charged PL imaging and NIR light-rechargeable UCPL imaging[57]; (b) In vivo ultrasensitive imaging using PLNPs/MnO2 composites[58]; (c)In vivo imaging of mice after injection of the multimodal composite nanoprobe GdAlO3:Mn4+,Ge4+@Au[70] |
图6 (a)PLNPs@ZIF-8用于酸激活的肿瘤成像和药物释放[76];(b)PLNPs@MIL-100(Fe)的合成以及PLNPs@MIL-100(Fe)在双模态成像和药物传递的应用[77];(c)在635 nm激光激发下,PSS改性PLNP-Bi2S3复合纳米平台的酸诱导聚集过程[85];(d)用于抑制肿瘤增殖的NIR可充电PDT“光学电池”[86];(e)复合纳米平台HSZGO用于联合治疗[88];(f)抗菌光催化剂H@LLG/T在治疗细菌感染方面的应用[109]Fig. 6 (a)PLNPs@ZIF-8 used for acid-activated tumor imaging and drug release[76];(b)Synthesis of the PLNPs@MIL-100(Fe) and application of PLNPs@MIL-100(Fe) in dual-modal imaging and drug delivery[77]; (c)Acid-induced aggregation process of the PLNP-Bi2S3 composite nanoplatform modified by PSS under 635 nm laser excitation[85];(d)NIR rechargeable PDT "optical battery" for inhibiting tumor proliferation[86]; (e)Composite nanoplatform HSZGO was used for combination therapy[88]; (f)Application of the antimicrobial photocatalyst H@LLG/T in the treatment of bacterial infections[109] |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
/
〈 |
|
〉 |