High Temperature Resistance and Heat Insulation of Oxide Aerogels
Received date: 2024-02-19
Revised date: 2024-07-14
Online published: 2024-09-15
Supported by
National Natural Science Foundation of China(52272021)
National Natural Science Foundation of China(52232002)
Hubei Three Gorges Laboratory Open/Innovation Fund(SK232006)
Oxide aerogel is one type of three-dimensional nano porous material, which has the advantages of high porosity, high specific surface area, low thermal conductivity, high melting point and so on. Moreover, oxide aerogel always shows excellent high-temperature resistance and thermal insulation performance. Thus, in this paper,the research progress of heat-resistant oxide aerogels including silica, alumina, zirconia aerogels, binary and multi-component and their composite counterparts are reviewed. The preparation method and performance of oxide aerogels are summarized, the existing problems are pointed out, and the application of oxide aerogels in the field of high temperature thermal insulation is prospected.
Contents
1 Introduction
2 Preparation of oxide aerogel
2.1 Preparation method
2.2 Drying method
3 SiO2 aerogel
3.1 Precursor of SiO2 aerogel
3.2 Pretreatment of SiO2 aerogel
3.3 SiO2 composite aerogel
4 Al2O3 aerogel
4.1 Precursor of Al2O3 aerogel
4.2 Structural control of Al2O3 aerogels
4.3 Al2O3 composite aerogel
5 ZrO2 aerogel
5.1 Precursor of ZrO2 aerogel
5.2 Structural control ZrO2 aerogels
5.3 ZrO2 composite aerogel
6 Two component and multi-component oxide aerogel
6.1 Two component oxide aerogel
6.2 Multi-component oxide aerogel
7 Conclusion and outlook
Key words: oxide aerogel; high temperature resistance; heat insulation
Qing Xu , Xinyue Wang , Weijie Cai , Hongjuan Duan , Haijun Zhang , Shaoping Li . High Temperature Resistance and Heat Insulation of Oxide Aerogels[J]. Progress in Chemistry, 2024 , 36(10) : 1520 -1540 . DOI: 10.7536/PC240208
表1 SiO2气凝胶的制备方法与性能a)Table 1 Preparation method and properties of SiO2 aerogela) |
Precursor | Drying method | Modified way | Service temperature /℃ | Specific surface area/ (m2/g) | Thermal conductivity/ (W/(m·K)) | Ref. |
---|---|---|---|---|---|---|
TMOS | Supercritical drying | − | − | − | 0.0135 (RT) | 44 |
Silica sol | Hydrothermal | 1200 | 156 (RT) 148 (1200 ℃) | − | 48 | |
MTMS | Insert flexible ether group | − | − | 0.0159 (RT) | 50 | |
TEOS | Add ZrCl4/AlCl3 | 1200 | 653.67 (RT ZrCl4) 524.32 (RT AlCl3) | − | 53 | |
P-VTMS | Add TPU | − | 2145 (RT) | 0.026 (RT) | 54 | |
TEOS | Doped with Y2O3 | 900 | 1010.4 (RT) 643.8 (900 ℃) | − | 56 | |
Silica sol | Atmospheric pressure drying | − | 700 | 333.43 (RT) | 0.019 (RT) 0.044 (600 ℃) | 46 |
Nano SiO2 aqueous liquid slurry | Add fiberglass felt | − | − | 0.02846 (100 ℃) 0.05457 (300 ℃) 0.09367 (500 ℃) 0.1506 (700 ℃) | 47 | |
TMOS | Age | 500 | 595 (RT) | − | 25 | |
TEOS、HMDZ | Solvent displacement | − | 750 (RT) | 0.07 (RT) | 26 | |
TEOS | Solvent displacement | − | 530 (RT) | − | 27 | |
TEOS | Hydrophobic modification | − | 973 (RT HMDS) 1067 (RT TMCS) | − | 29 | |
TEOS、MTMS | − | 300 | 364.5 (RT) 895.5 (300 ℃) | − | 30 | |
TEOS | Vapor deposition BN | 700 | 526 (RT) 252 (RT BN) | 0.083 (RT) 0.090 (BN) | 31 | |
TEOS | Adding SiO2 nanofibers and hydrophobic modification | − | 624.19 (RT) | 0.021 (RT) | 52 | |
Nano SiO2 aqueous liquid slurry | Add fiberglass felt and SiC | − | − | 0.1334 (700 ℃) | 47 | |
TEOS | Doped with Y2O3 | 727 | 917.5 (RT) | 0.051 (RT) 0.080(727 ℃) | 55 | |
TEOS | Freeze-drying | Electrospinning | 1100 | 0.024 (RT) 0.036 (300 ℃) | 44 |
a) TEOS:Ethyl orthosilicate;TMOS:Methyl silicate;MTMS:Methyltrimethoxysilane;P-VTMS:Polyethylene based trimethoxysilane;TPU:Thermoplastic Polyurethane; HMDS:Hexamethyldisilazane;TMCS:Trimethylsilyl chloride;RT:Room Temperature |
图2 (a) SiO2纳米纤维气凝胶的制造的示意图;(b) SiO2纳米纤维气凝胶中纳米纤维之间的交联网络;(c) SiO2纳米纤维气凝胶在丁烷喷灯(1100 ℃)和液氮(−196 ℃)的火焰中;(d) SiO2纳米纤维气凝胶的微观结构[44]Fig. 2 (a) Schematic illustration showing the fabrication of SiO2 nanofiber aerogel. (b) The crosslinking networks between the nanofibers of SiO2 nanofiber aerogel. (c) SNF aerogels in flame of a butane blowtorch (1100 ℃) and liquid nitrogen (−196 ℃). (d) Microscopic architecture of an SiO2 nanofiber aerogel[44] |
图4 (a) 常压干燥法制备柔性疏水二氧化硅气凝胶的示意图;将水滴置于干燥后的疏水二氧化硅气凝胶(b)与在300 ℃ (c)和400 ℃ (d)热处理后的疏水二氧化硅气凝胶光学图片;以MTMS和TEOS为共前驱体(MTMS体积百分比为60%),经TMCS表面改性后凝胶的SEM图像(e)和300 ℃热处理后(f)二氧化硅气凝胶的SEM图像及结构[30]Fig. 4 (a) Schematic diagram of forming flexible hydrophobic silica aerogel by APD process. Place the water drop on the dried hydrophobic silica aerogel (b) and the optical picture of hydrophobic silica aerogel after heat treatment at 300 ℃ (c) and 400 ℃ (d). SEM images of gel after surface modification of TMCS with MTMS and TEOS as co precursors (MTMS volume percentage is 60%) (e) and 300 ℃ heat treatment (f)[30] |
表2 Al2O3气凝胶的制备方法与性能a)Table 2 Preparation method and properties of Al2O3 aerogela) |
Precursor | Drying method | Modified way | Service temperature /℃ | Specific surface area/ (m2/g) | Thermal conductivity/ (W/(m·K)) | Ref. |
---|---|---|---|---|---|---|
ASB | Supercritical drying | Add ceramic fiber felt | 1000 | - | 0.022 (RT) 0.058 (600 ℃) 0.092 (1000 ℃) | 58 |
AIP | - | - | 376 (RT) | 0.029 (RT) | 59 | |
ASB | ISWF Method Combined with SCFM and HMDS Gas Phase Modification | 1300 | 152~261 (1200 ℃) 125~136 (1300 ℃) | 0.05 (RT) | 60 | |
AlCl3·6H2O | Doped with Si | 1200 | 283 (1000 ℃) | 0.035 (RT) | 75 | |
AlCl3·6H2O | Doped with Si | 1200 | 515 (RT) 217 (1000 ℃) 68 (1200 ℃) | 0.025 (150 ℃) 0.121 (1200 ℃) | 76 | |
AIP | Carbon coated Al2O3 nanorods | 1400 | - | 0037 (RT) 0.065 (1200 ℃) | 77 | |
AlCl3·6H2O | Doped with SrO | 1200 | 122 (1200 ℃) | 0.060 (RT) | 80 | |
AlCl3·6H2O | Doped with Y2O3 | 1000 | 380~400 (1000 ℃) | - | 81 | |
Al(NO3)3·9H2O | Introducing SiO2 fiber felt | 900 | - | 0.028 (35 ℃) 0.033 (600 ℃) | 83 | |
AlCl3·6H2O | Adding mullite fibers | 1400 | - | 0.058 (200 ℃) 0.152 (1400 ℃) | 84 | |
AlCl3·6H2O | Doped with TiO2 | 1000 | 650 (RT) | 0.136 (1000 ℃) | 86 | |
AlCl3·6H2O | Atmospheric pressure drying | - | 1000 | 465 (RT) | - | 60 |
Al(NO3)3·9H2O | Freeze-drying | Preparation α- Al2O3 nanosheets bonded with silica sol | 1600 | - | 0.029 (RT) | 65 |
AlCl3·6H2O | Using chitosan as a template and using solution freezing drying calcination technology | 1300 | 250 (RT) | - | 69 | |
Al2O3 nanorod sol | PVA bonding and doped with Si | 1400 | 118 (RT) 39.12 (1400 ℃) | 0.0246 (RT) 0.0949 (1000 ℃) | 78 | |
ASB | Freeze-drying | Adding TEOS and SiO2 aerogel nanoparticles, Introducing inert inorganic molecular chains | 1700 | - | 0.028 (RT) | 79 |
ASB | - | Combining Blow Spinning and Atomic Layer Deposition (ALD) | 900 | - | 0.022 (RT) | 68 |
a) ASB:Aluminum sec-butoxide;AIP:Aluminum isopropoxide;ISWF:Acetone Aniline in situ Water Formation;SCFM:Supercritical Fluid Modification;HMDS:Hexamethyldisilazane;TEOS:Ethyl orthosilicate;RT:Room Temperature |
图6 (a) Si掺杂Al2O3纳米棒气凝胶制备示意图;(b) Si掺杂Al2O3纳米棒气凝胶在干燥后和在不同温度下处理后的照片;(c) Si掺杂Al2O3纳米棒气凝胶在1400 ℃下的SEM图像[78]Fig. 6 (a) Schematic diagram of preparation of Si doped Al2O3 nanorod aerogels; (b) Macroscopic photographs of Si doped Al2O3 nanorod aerogel after drying and after treatment at different temperatures; (c) SEM image of Si doped Al2O3 nanorod aerogel at 1400 ℃ [78] |
图9 (a) RF包覆Al2O3纳米棒气凝胶、碳包覆Al2O3纳米棒气凝胶和Al2O3纳米棒气凝胶制备示意图;(b) Al2O3纳米棒和RF层之间的强耦合界面示意图;(c) RF包覆Al2O3纳米棒气凝胶,(d)碳包覆Al2O3纳米棒气凝胶和 (e) Al2O3纳米棒气凝胶的SEM图像[77]Fig. 9 (a) Preparation schematic diagram of RF coated Al2O3 nanorod aerogel, carbon coated Al2O3 nanorod aerogel and Al2O3 nanorod aerogel. (b) Schematic illustration of the strong interfacial coupling between Al2O3 nanorods and RF layers. (c) SEM images of RF coated Al2O3 nanorod aerogels, (d) carbon coated Al2O3 nanorod aerogels and (e) Al2O3 nanorod aerogels[77] |
表3 ZrO2气凝胶的制备方法与性能a)Table 3 Preparation method and properties of ZrO2 aerogela) |
Precursor | Drying method | Modified way | Service temperature /℃ | Specific surface area/(m2/g) | Thermal conductivity/ (W/(m·K)) | Ref. |
---|---|---|---|---|---|---|
ZBO | Supercritical drying | - | 500 | 178 (RT) | - | 90 |
(C5H8O2)4·Zr | Doped with SiO2 | 1000 | - | 0.026 (600 ℃) 0.037 (800 ℃) 0.058 (1000 ℃) | 91 | |
ZrO(NO₃)₂ | Introducing formamide | 800 | 514.5 (RT) | - | 93 | |
ZrOCl2·8H2O | Electrolytic method | - | 640 (RT) | - | 94 | |
ZrO(NO₃)₂ | - | 1000 | 223 (1000 ℃) | - | 96 | |
ZrO(NO₃)₂ | Alcohol water heating method | 1000 | 675.6 (RT) | - | 97 | |
ZrOCl2 | Doped with La | 1200 | 107(1000 ℃) | 106 | ||
ZrO(NO₃)₂ | Atmospheric pressure drying | - | - | 645 (RT) | - | 98 |
ZrO(NO3)2 | Add formamide and heat with alcohol and water | - | 619 (RT) | - | 99 | |
ZrO(NO₃)₂ | Freeze-drying | Gel casting process | 900 | - | - | 101 |
a) ZBO:N-butanol zirconium;RT:Room Temperature |
表4 二元和多元氧化物气凝胶的制备方法与性能a)Table 4 Preparation method and properties of two component and multi-component oxide aerogela) |
Precursor | Drying method | Modified way | Service temperature/℃ | Specific surface area/ (m2/g) | Thermal conductivity/ (W/(m·K)) | Ref. |
---|---|---|---|---|---|---|
ASB、TEOS | Supercritical drying | - | 1200 | 97~116 (1200 ℃) | - | 108 |
Water glass、AlCl3 | Al:Si=0.37 | 1200 | 613 (RT) 11.8 (1000 ℃) | 0.029 (RT) 0.121 (1200 ℃) | 109 | |
ASB、TEOS | Mullite fibers impregnated with SiC coating | 1000 | - | 0.049 (1000 ℃) | 110 | |
AlCl3·6H2O、TEOS | Impregnated ZrO2 fibers | 800 | - | 0.049 (RT) | 111 | |
TEOS、Al(NO3)3·9H2O | Aluminum silicate fiber reinforcement | 1200 | 600 (RT) 40 (1300 ℃) | 0.026 (RT) | 112 | |
ZrOCl2·8H2O、TEOS | Supercritical fluid deposition | 1000 | 551 (RT) 50 (1300 ℃) | - | 113 | |
ZrOCl2、TEOS | ZrO2 fiber reinforcement | - | - | 0.0235~0.0296 (RT) | 114 | |
ZrOCl2、TEOS | Impregnated mullite fiber | 1200 | - | 0.0524 (RT) | 115 | |
ZrOCl2·8H2O、TEOS | Multiple impregnation of ZrO2-SiO2 sol | - | - | 0.0231~0.0306 (RT) | 116 | |
TEOS、AlCl3·6H2O、ZrOCl2·8H2O | - | 800 | - | 0.05 (RT) 0.26 (1000 ℃) | 117 | |
TEOS、AlCl3·6H2O、MgCl2·6H2O | - | 800 | - | 0.06 (RT) 0.3 (1000 ℃) | 119 | |
TEOS、AlCl3·6H2O、ZrOCl2·8H2O、MgCl2·6H2O | - | 1200 | 597.22 (RT) 358.53 (1000 ℃) 84.44 (1200 ℃) | 0.03 (RT) | 119 | |
AlCl3·6H2O、AIP、C8H12O8·Zr | Freeze-drying | Gel casting process | 1300 | - | 0.1602~0.1623 (RT) | 118 |
AlCl3·6H2O、AIP、Zr(CO3)2 | - | electrospinning | 1300 | - | 0.03166 (RT) | 117 |
a) ZBO:N-butanol zirconium;AIP:Aluminum isopropoxide;TEOS:Ethyl orthosilicate;RT:Room Temperature |
图11 (a) 浸渍法制备ZrO2-SiO2气凝胶工艺流程图;不同浸渍次数的0次(b),1次(c),2次(d),3次(e)自增强ZrO2-SiO2气凝胶SEM图像[116]Fig. 11 (a) Flow chart of the preparation processing for ZrO2-SiO2 aerogel fabricated by impregnation method.SEM of the nanostructure self-reinforcing ZrO2-SiO2 aerogels with different impregnation times. (b) ZrO2-SiO2-0; (c): ZrO2-SiO2-1; (d): ZrO2-SiO2-2; (e): ZrO2-SiO2-3[116] |
[1] |
(梁伟, 金华, 孟松鹤. 宇航学报, 2021, 42(4): 409.)
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
(邢亚娟, 孙波, 高坤, 王振河, 杨毅. 宇航材料工艺, 2018, 48(4): 9.)
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
(李承东, 陈照峰, 姚伯龙, 程琳, 樊世璞. 宇航材料工艺, 2019, 49(5): 1.)
|
[29] |
(毕海江, 黄冬梅, 何松. 材料科学与工程学报, 2014 (2): 178.)
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
(卫智毅, 王慧, 余天培, 程辉, 马信, 李守柱. 现代纺织技术, 2022, 30(6): 231. )
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
(李文静, 张丽娟, 周玉贵. 第一届气凝胶材料国际学术研讨会论文集. 2015.51-59.)
|
[49] |
|
[50] |
|
[51] |
(罗抗磊, 姜勇刚, 冯军宗. 人工晶体学报, 2016, 45(10): 2389.)
|
[52] |
|
[53] |
(伊希斌, 王修春, 张晶, 马婕, 刘硕, 沈晓冬, 崔升. 无机化学学报, 2014, 30(3): 603. )
|
[54] |
|
[55] |
|
[56] |
(张君君, 仲亚, 沈晓冬, 崔升, 孔勇, 冀黎莉, 李博雅. 无机化学学报, 2014, 30(4): 793.)
|
[57] |
(彭飞, 姜勇刚, 冯坚. 无机材料学报, 2021, 36(7): 673.)
|
[58] |
(王虹, 周裴灿, 李荣年, 胡晓东. 中国建材科技, 2019, 28(6): 34.)
|
[59] |
|
[60] |
(陈恒. 太原理工大学硕士论文, 2016. )
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
(廖俊. 西南科技大学硕士论文, 2020. )
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
(孙雪峰, 吴玉胜, 李来时. 功能材料, 2018, 8(9): 09078.)
|
[81] |
(周洁洁, 陈晓红, 宋怀河, 胡子君, 孙陈诚, 姚先周. 硅酸盐通报, 2010, 29(5): 1002.)
|
[82] |
|
[83] |
|
[84] |
(孙晶晶, 胡子君, 吴文军. 宇航材料工艺, 2017, 47(3): 33.)
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
(朱伟卓, 吴幼青, 吴诗勇, 韩宇晴. 功能材料, 2022, 53(7):7102.)
|
[91] |
|
[92] |
|
[93] |
(朱俊阳. 济南大学硕士论文, 2016.)
|
[94] |
|
[95] |
|
[96] |
|
[97] |
(武志刚, 赵永祥, 刘滇生. 功能材料, 2004, 35(3): 389. )
|
[98] |
(郭兴忠, 颜立清, 杨辉, 李建, 李超宇, 蔡晓波. 物理化学学报, 2011, 27(10): 2478. )
|
[99] |
(颜立清. 浙江大学硕士论文, 2012. )
|
[100] |
(胡良发. 清华大学硕士论文, 2010.)
|
[101] |
(沈琳. 无机盐工业, 2017, 49(5): 30.)
|
[102] |
(杜博宇, 杨加胜, 陶诗倩. 航空制造技术, 2023, 66(17): 89.)
|
[103] |
Borik,
|
[104] |
(凌永一, 王珍, 张婧. 耐火材料, 2021, 55(1): 81.)
|
[105] |
|
[106] |
(楚伟. 齐鲁工业大学硕士论文, 2021. )
|
[107] |
|
[108] |
(冯坚, 高庆福, 武纬, 张长瑞, 冯军宗, 姜勇刚. 无机化学学报, 2009, 25(10): 1758.)
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
|
[118] |
|
[119] |
(刘铸汉. 北京化工大学硕士论文, 2020.)
|
/
〈 |
|
〉 |