Extraction and Detection of Flavonoid Compounds in Scutellaria baicalensis: A Review

LI Ke, FENG Linlin, XUE Wanying, TANG Yuyu, HAO Jinghong, YANG Liu

Chin Agric Sci Bull ›› 2023, Vol. 39 ›› Issue (15) : 158-164.

PDF(1155 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1155 KB)
Chin Agric Sci Bull ›› 2023, Vol. 39 ›› Issue (15) : 158-164. DOI: 10.11924/j.issn.1000-6850.casb2022-0506

Extraction and Detection of Flavonoid Compounds in Scutellaria baicalensis: A Review

Author information +
History +

Abstract

Scutellaria baicalensis is a traditional Chinese herbal medicine with high medicinal value. In order to extract and detect flavonoids from Scutellaria baicalensis, the methods of extracting flavonoid compounds from Scutellaria baicalensis roots and aboveground parts are summarized, such as organic solvent extraction, water extraction, etc. The separation and purification methods of flavonoid compounds in Scutellaria baicalensis roots and aboveground parts are analyzed, such as column chromatography, high speed counter-current chromatography, etc. The composition determination methods of flavonoid compounds in Scutellaria baicalensis roots and aboveground parts are sorted out, including high performance liquid chromatography and ultra-high performance liquid chromatography, etc. We also propose suggestions for improving the practical application of Scutellaria baicalensis, such as combining laboratory research with industrial production, improving experimental equipment and extraction process to provide convenience for industrial production, making full use of Scutellaria baicalensis resources to create social benefits, etc. Based on the analysis of flavonoid compounds, this paper reviews the research progress of extraction, separation and determination methods of flavonoid compounds from Scutellaria baicalensis roots and aboveground parts, thus providing technical reference for the large-scale development and application of flavonoids from Scutellaria baicalensis and laying technical foundation for further research and promotion of Scutellaria baicalensis resources.

Key words

flavonoid compounds / extraction assay / Scutellaria baicalensis / isolation and purification / organic solvent extraction / column chromatography / high performance liquid chromatography

Cite this article

Download Citations
LI Ke , FENG Linlin , XUE Wanying , et al . Extraction and Detection of Flavonoid Compounds in Scutellaria baicalensis: A Review[J]. Chinese Agricultural Science Bulletin. 2023, 39(15): 158-164 https://doi.org/10.11924/j.issn.1000-6850.casb2022-0506

References

[1]
谷婧, 黄玮, 张文生. 黄芩野生与栽培资源分布调查研究[J]. 中国中医药信息杂志, 2013, 20(12):42-45.
[2]
LIANG J, GUO Q J, CHANG T Y, et al. Reliable origin identification of Scutellaria baicalensis based on terahcrtz time-domain spectroscopy and pattern recognition[J]. Optik, 2018, 174:7-14.
[3]
SHANG X F, HE X R, HE X Y, et al. The genus Scutellaria an ethnopharmacological and phytochemical review[J]. Journal of ethnophar macology, 2010, 128:279-313.
[4]
国家药典委员会. 中华人民共和国药典(一部)[M]. 北京: 中国医药科技出版社, 2015:301-302.
[5]
聂鑫. 黄芩苷粗品化学成分的研究[D]. 济南: 南方医科大学, 2008.
[6]
李堆淑. 中药黄芩化学成分的研究进展[J]. 江西农业学报, 2013(8):51-54.
[7]
姜蔚. 野黄芩苷药理作用及机制研究进展[J]. 中国药理学通报, 2018, 12:1634-1637.
[8]
萨其儿, 吴香杰. 黄芩茎叶的药理作用研究进展[J]. 中国民族医药杂志, 2014, 6:51-55.
[9]
LIU Y, WANG H, CAI X. Optimization of the extraction of total flavonoids from Scutellaria baicalensis Georgi using the response surface methodology[J]. Journal of food science and technology-mysore, 2015, 52(4):2336-2343.
[10]
陈四平, 赵桂琴, 潘海峰, 等. 应用高速逆流色谱分离黄芩茎叶中黄酮类化合物[J]. 承德医学院学报, 2002(4):328.
[11]
肖苏萍, 何春年, 曾燕, 等. 干燥方法与采收期对黄芩花中黄酮类化学成分的影响[J]. 中国现代中药, 2013, 15(11):975-980.
[12]
万新焕, 陈新梅, 马山, 等. 黄酮类化合物提取新方法的应用[J]. 中草药, 2019, 50(15):3691-3699.
[13]
HODNICK W F, MILOSAVLJEVIC E B, NELSON J H, et al. Electrochemistry of flavonoids relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids[J]. Biochem pharmacol, 1988, 37(13):2607-2611.
We have investigated the redox behavior of a series of structurally related flavonoids employing cyclic voltammetry under physiological conditions. The flavonoids that auto-oxidized and produced oxygen radicals had oxidation potentials (E 1/2) significantly lower [-30 to +60 mV vs (SCE)] than those that did not undergo auto-oxidation (+130 to +340 mV vs SCE). The range of E 1/2 values for the auto-oxidizable flavonoids was comparable to the E 1/2 range reported for the optimum quinone induced production of superoxide (O2 pi) in mitochondrial NADH-CoQ reductase (complex I). The most potent flavonoid inhibitors of mitochondrial succinate-CoQ reductase (complex II) possessed hydroxyl configurations capable of supporting redox reactions. For a series of 3,5,7-trihydroxyflavones that differed by b-ring hydroxylation it was found that decreasing E 1/2 of the flavonoids was associated with decreasing I50 values towards succinoxidase. These findings suggest that the electrochemical properties of the flavonoids may contribute to their biological activity.
[14]
HAVSTEENB H. The biochemistry and medical significance of the flavonoids[J]. Pharmacol therapeut, 2002, 96(2-3):67-202.
Flavonoids are plant pigments that are synthesised from phenylalanine, generally display marvelous colors known from flower petals, mostly emit brilliant fluorescence when they are excited by UV light, and are ubiquitous to green plant cells. The flavonoids are used by botanists for taxonomical classification. They regulate plant growth by inhibition of the exocytosis of the auxin indolyl acetic acid, as well as by induction of gene expression, and they influence other biological cells in numerous ways. Flavonoids inhibit or kill many bacterial strains, inhibit important viral enzymes, such as reverse transcriptase and protease, and destroy some pathogenic protozoans. Yet, their toxicity to animal cells is low. Flavonoids are major functional components of many herbal and insect preparations for medical use, e.g., propolis (bee's glue) and honey, which have been used since ancient times. The daily intake of flavonoids with normal food, especially fruit and vegetables, is 1-2 g. Modern authorised physicians are increasing their use of pure flavonoids to treat many important common diseases, due to their proven ability to inhibit specific enzymes, to simulate some hormones and neurotransmitters, and to scavenge free radicals.
[15]
盛文胜. 蜂胶中黄酮的提取及应用研究[D]. 南昌: 南昌大学, 2007.
[16]
ZHANG H F, ZHANG X, YANG X H, et al. Microwave assisted extraction of flavonoids from cultivated Epimedium sagittatum: extraction yield and mechanism, antioxidant activity and chemical composition[J]. Indu crops prod, 2013, 50(10):857-865.
[17]
覃洁萍, 许学健, 董明胶. 广西藤茶中黄酮类成份的提取工艺研究[J]. 中国现代应用药学杂志, 2000, 17(3):196-197.
[18]
阿木古楞, 裴乐, 李锋, 等. 超声辅助提取法对黄芩总黄酮含量的影响[J]. 畜牧与饲料科学, 2020, 41(1):73-76.
[19]
湛志华. 金花茶叶中黄酮成分的提取与分离[D]. 桂林: 广西师范大学, 2006.
[20]
盛达成, 肖文军, 邵元元. 高速逆流色谱分离纯化荷叶黄酮槲皮素[J]. 食品工业科技, 2012, 33(4):312-314,319.
[21]
李金. 茶树花黄酮提取分离的参数优化与品种间的差异性研究[D]. 杭州: 浙江大学, 2019.
[22]
王靖, 邹雨佳, 唐华澄, 等. 高效液相色谱法(HPLC)测定银杏黄酮含量[J]. 食品工业科技, 2006(3):184-185,191.
[23]
白云, 朱瑞超, 李晋, 等. 超高效液相色谱法同时测定金花葵花中5个黄酮类成分含量[J]. 天津中医药, 2018, 35(2):147-150.
[24]
李金, 陈莲芙, 金恩惠, 等. 不同茶树品种的茶树花黄酮苷研究[J]. 浙江大学学报:农业与生命科学版, 2019, 45(6):707-714.
[25]
何春年, 彭勇, 肖伟, 等. 黄芩地上部分与根部的化学成分比较研究[J]. 中国现代中药, 2011, 13(12):32-35.
[26]
申洁. 黄芩地上部位质量评价研究及黄芩属药用亲缘学初探[D]. 北京: 北京协和医学院, 2018.
[27]
林玉萍, 付胜男, 王蒙蒙, 等. 丽江黄芩根化学成分的研究[J]. 中成药, 2021, 43(9):2399-2403.
[28]
付胜男, 李欣坪, 王蒙蒙, 等. 滇黄芩根化学成分的研究[J]. 中成药, 2021, 43(6):1493-1499.
[29]
王红燕, 肖丽和, 刘丽, 等. 粘毛黄芩根的化学成分研究[J]. 沈阳药科大学学报, 2003, 20(5):339-348.
[30]
姚雪, 程云霞, 陈龙, 等. 黄芩化学成分的研究[J]. 中成药, 2020, 42(11):2935-2940.
[31]
马俊利. 黄芩茎叶化学成分研究[J]. 中国实验方剂学杂志, 2013, 19(7):147-149.
[32]
郭晓燕. 黄芩茎叶黄酮类化学成分研究[D]. 承德: 承德医学院, 2015.
[33]
马森林. 黄芩茎叶化学成分研究[D]. 石家庄: 河北师范大学, 2012.
[34]
王宏伟, 尹志峰, 李洪波, 等. 黄芩茎叶中的化学成分[J]. 中国实验方剂学杂志, 2016, 22(22):41-44.
[35]
刘洁, 李备, 刘春, 等. 海南黄芩中黄酮类化合物的分离与鉴定[J]. 生物技术通讯, 2018, 29(03):391-396,441.
[36]
郭振库, 金钦汉, 范国强, 等. 黄芩中黄芩苷微波提取的实验研究[J]. 中草药, 2001, 32(11):985-987.
[37]
程存归, 金文英, 吴兰菊. 从黄芩中微波辅助提取黄芩苷的研究[J]. 林产化学与工业, 2005, 25(1):81-83.
[38]
于千, 张杨. 正交设计法对黄芩提取工艺的研究[J]. 沈阳医学院学报, 2011, 13(3):171-172.
[39]
李杰, 李婼楠, 王艺文, 等. 超声辅助低共熔溶剂法提取黄芩中3种黄酮类成分的工艺研究[J]. 中华中医药学刊, 2021, 39(2):143-146.
[40]
王佩琪, 王成明, 卢静华. 正交试验法优选超声提取黄芩苷的研究[J]. 中医药学刊, 2004, 22(11):2133-2134.
[41]
王胜男, 徐源梅, 李红玉. 超声循环提取黄芩中黄芩苷的工艺研究[J]. 中华中医药学刊, 2008, 26(6):1332-1333.
[42]
徐丹洋, 陈佩东, 张丽, 等. 黄芩的化学成分研究[J]. 中国实验方剂学杂志, 2011, 1:78-80.
[43]
李恩泽, 刘月芬, 刘玉君, 等. 不同产地黄芩中6种化学成分含量测定[J]. 中国医院药学杂志, 2018, 38(9):946-948.
[44]
刘征辉, 魏静娜, 赵琳琳, 等. 超高效液相色谱法同时测定黄芩提取物多指标成分的含量[J]. 时珍国医国药, 2015, 26(8):1847-1849.
[45]
LIU G Z, MA J Y, CHEN Y Z, et al. Investigation of flavonoid profile of Scutellaria bacalensis Georgi by high performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry[J]. Journal of chromatography a, 2009,23,4809-4814.
[46]
QIAO X, LI R, SONG W, et al. A targeted strategy to analyze untargeted mass spectral data: rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering[J]. Journal of chromatgraphy a, 2016:83-95.
[47]
张琳. 黄芩茎叶抑菌抗炎活性及抗小鼠乳腺炎作用的研究[D]. 南京: 南京中医药大学, 2019.
[48]
杨志军, 杨秀娟, 李晶, 等. 甘肃不同产地黄芩茎叶和根对急性肝损伤小鼠的影响[J]. 中国中医药信息杂志, 2015, 22(6):61-63.
[49]
梅盛前, 肖捷, 李放, 等. 黄芩茎叶黄酮对大鼠急性脊髓损伤后的神经保护作用及对HMGB1/TLR4/NF-kB信号通路的影响[J]. 中国中医急症, 2018, 27(5):802-805,816.
[50]
佟继铭, 陈光晖, 刘玉玲, 等. 黄芩茎叶总黄酮对家兔实验性动脉粥样硬化的预防作用[J]. 中草药, 2005, 36(1):93-95.
[51]
史高峰, 祝娟娟, 陈学福, 等. 从黄芩茎叶粗提物中制备野黄芩苷的研究[J]. 中成药, 2012, 34(12):2455-2457.
[52]
许朝且, 江群艳, 蒋启航, 等. 黄芩茎叶总黄酮制备工艺优化研究[J]. 南京中医药大学学报, 2020, 36(5):593-599.
[53]
张雅蓉. 黄芩茎叶对照提取物的制备及其在药材质量控制中的应用研究[D]. 长春: 长春中医药大学, 2019.
[54]
张慧, 李媛, 徐倩文, 等. 黄芩茎叶中活性成分野黄芩苷的微波提取工艺[J]. 食品研究与开发, 2012, 33(8):74-78.
[55]
骆冉冉, 刘文娣, 邓丽莉, 等. 响应面法优化黄芩茎叶总黄酮提取工艺[J]. 食品安全质量检测学报, 2013, 4(6):1865-1872.
[56]
李莉, 周卫涛, 李峰. 正交试验法优选黄芩茎叶中野黄芩苷提取工艺研究[J]. 世界最新医学信息文摘, 2017, 17(62):108-109.
[57]
赵宝颖. 黄芩地上部分化学成分研究[D]. 齐齐哈尔: 齐齐哈尔大学, 2013.
[58]
张雅蓉, 徐犇, 李纳, 等. HPLC法测定黄芩茎及叶中野黄芩苷的含量[J]. 药学研究, 2018, 37(8):449-452.
[59]
王云龙, 刘春生, 陈立柱, 等. 高效液相色谱法同时测定黄芩茎、叶、花中野黄芩苷含量[J]. 中国药业, 2021, 30(17):76-78.
[60]
严宝飞, 刘嘉, 段金廒, 等. 基于UPLC法和网络药理学的黄芩茎叶防治新型冠状病毒肺炎潜在作用机制研究[J]. 药物评价研究, 2020, 43(6):991-1002.
[61]
段云. 超高效液相色谱-串联质谱法同时测定黄芩提取物中4种黄酮类成分[J]. 理化检验:化学分册, 2020, 56(7):771-776.
[62]
郭继芬, 陈四平, 乔善义, 等. 黄芩总黄酮提取物的HPLC-MS/MS分析[J]. 药物分析杂志, 2005, 25(3):267-269.
PDF(1155 KB)

Accesses

Citation

Detail

Sections
Recommended

/