Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 

Top access

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All

Please wait a minute...
  • Select all
    |
  • ZHANGJun, WUJuanjuan, LUOZhexi
    Chinese Agricultural Science Bulletin. 2025, 41(10): 7-17. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0454
    PDF (68) HTML (118)   Knowledge map   Save

    This study aims to systematically summarize the application of maize live haploid technology in maize molecular breeding, with focus on exploring the selection methods, formation mechanisms, identification methods, doubling methods, and application in population improvement of maize live haploid high-frequency induction lines, providing reference and guidance for the large-scale application of live haploid breeding technology. This study used a literature review method to summarize the relevant research results and practical experience on maize haploid technology, and analyzed the advantages and disadvantages of various methods in practical applications. The research results indicated that maize live haploid technology played an important role in breeding excellent inbred lines and population improvement. Through high-frequency induction line breeding, a large number of excellent haploid plants had been successfully obtained; the identification and doubling methods effectively improved haploid formation and stability. The live haploid technology had shown significant doubling effects in population improvement, providing new ideas and methods for maize breeding. In summary, maize live haploid technology is an efficient and rapid breeding method with broad application prospects. In the process of corn breeding, combining live haploid technology can accelerate the pace of quality improvement and yield increase, providing strong support for the healthy development of the corn industry.

  • WANGHaoyi, QIAOWei, LINYuying, YANGHaobo, JIEWeiguang
    Chinese Agricultural Science Bulletin. 2025, 41(6): 126-131. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0589

    This study comprehensively reviews the recent research on bacterial degradation of pesticide residues both domestically and internationally, enumerates the common bacteria for degrading pesticide residues in soybeans, conducts an in-depth analysis of the pathways and mechanisms of bacterial degradation of common pesticide residues in soybeans, and deliberates on the impacts of pesticide structure, the intrinsic mechanism of bacteria, and environmental factors on the bacterial degradation of pesticide residues in soybeans. In light of the issues such as soil and crop pollution caused by excessive pesticide use, which adversely affect human health and the ecological environment, the degradation function of bacteria on pesticides can be utilized for improvement, thereby enhancing crop yield and facilitating sustainable agricultural development. It is proposed that the further exploration of bacterial species capable of degrading pesticide residues in soybeans and the strategy of combining bacterial strains in the future should be pursued, with the aim of enhancing soybean yield and quality, reducing the harm of pesticide residues to human health, and providing a reference for ecological protection.

  • LUYunfeng, LIRuiqun, ZENGRunhua, LIShuzhong, WANGZhongmei, LIZhihai, JIADongdong
    Chinese Agricultural Science Bulletin. 2025, 41(8): 149-158. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0513
    PDF (11) HTML (16)   Knowledge map   Save

    Understanding the latest research hotspots and development trends in the field of banana fusarium wilt was the goal of the present study. Based on the core collection database of Web of Science (WOS), this paper conducted an advanced search on the theme of "banana fusarium wilt ", selected 779 papers published in 30 years from 1993 to 2023, and used CiteSpace visual analysis software. The bibliometrics analysis was conducted from the indicators of the annual number of published papers, subject of published papers, published journals, published countries, institutions, and cooperation between authors, literature co-citations and keywords. The results showed that: (1) from 2009 to 2023, the number of literatures in the field of banana fusarium wilt research showed an overall increasing trend, and the disciplines involved were mainly botany, accounting for 35.7% of the total literatures. The top four academic journals in terms of volume were Frontiers in Microbiology, European Journal of Plant Pathology, Frontiers in Plant Science and Journal of Fungi. (2) China, the United States and India had published more papers in the field of banana fusarium wilt research, but there was less international cooperation. The Chinese Academy of Tropical Agricultural Sciences, the Ministry of Agriculture and Rural Affairs of China and Hainan University had published the most papers in China. Shen Qirong and Li Rong from Nanjing Agricultural University and Ruan Yunze from Hainan University were influential researchers in the field of banana fusarium wilt research. (3) The biological control of banana fusarium wilt was still an important focus and research frontier in the field of banana fusarium wilt research. To sum up, there is a lot of basis for the research of banana fusarium wilt in various countries. Through the application of biological control technology of banana fusarium wilt, the suppression of fusarium wilt of banana can promote the healthy growth of banana, and promote the sustainable development of banana industry is the focus of future research.

  • HOUChenwei, GUOYaqing, CHENGCheng, WANGQi
    Chinese Agricultural Science Bulletin. 2025, 41(11): 132-139. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0601
    PDF (12) HTML (17)   Knowledge map   Save

    This study aims to sort out the impact of foliar fertilization on crop productivity. Through extensive research on a large number of domestic and foreign literatures, it reviews the development of foliar fertilizers, summarizes the types and characteristics of different foliar fertilizers, and concludes the roles of different types of foliar fertilizers in promoting plant growth and alleviating plant stress. Moreover, it takes the stomata and cuticle on the leaf surface as the entry point to summarize the mechanism of action of foliar fertilizers. Research has found that when reactive oxygen species accumulate in large quantities within plants, it will reduce photosynthetic efficiency and affect crop growth. Foliar fertilization can enhance the antioxidant activity of crops, regulate photosynthetic activity, energy metabolism and nutrient assimilation and other physiological processes to promote crop growth. Finally, the problems existing in the practical application of foliar fertilizers and the prospects for further exploring the mechanism by which foliar fertilizers regulate plant growth and development are discussed and prospected.

  • ZHAIYufeng, DINGLan, YUYemin, JIAQiaojun, LIANGZongsuo, WANGDekai
    Chinese Agricultural Science Bulletin. 2024, 40(29): 21-30. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0141

    The genus Polygonatum Mill, commonly referred to as "Huang Jing," are plants renowned for their medicinal and edible properties. Their active constituents, including polysaccharides, flavonoids, and saponins, exhibit notable pharmacological effects. Recent studies have predominantly centered on the extraction of saponin components from the genus Polygonatum, which are attributed with anti-fatigue, antioxidant, hypoglycemic, lipid-lowering, and immune-enhancing properties. While there has been some advancement in the structural analysis of the genus Polygonatum saponins, their biosynthetic pathways remain underexplored. The synthesis of saponins in the genus Polygonatum occurs via the mevalonic acid pathway and the 2-C-methyl-D-erythritol-4-phosphate pathway, encompassing multiple enzymatic steps. This research indicates that the genus Polygonatum saponins exert diverse biological effects, including anti-tumor, antibacterial, anti-inflammatory, antiviral, and immune regulatory activities, and hold significant potential in medicine, food, cosmetics, and other sectors. Nonetheless, current studies are limited by inadequate structural analysis, an incomplete understanding of biosynthetic pathways, and ambiguous mechanisms of pharmacological action. Future endeavors should prioritize the isolation, structural analysis, synthetic biology, and pharmacology of the genus Polygonatum saponins to advance their scientific investigation and product development, thereby laying a foundation for the creation of novel therapeutic agents.

  • LIUWei, CAIWeijia, WANGHao, LUOGuijie, LIUXu
    Chinese Agricultural Science Bulletin. 2025, 41(3): 36-41. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0622

    In this paper, the research status of edible dock was briefly described from the aspects of nutritional value, safety, extraction technology of protein and active substances, food and health products, feeding, soil improvement and cultivation technology, etc. It was analyzed that the values of nutrition, health care, food use, feeding use and soil improvement of edible dock were high, but people’s recognition of leaf-eating grass was low, the related basic and applied technology research was still in the initial stage, and the development of the industry was slow. Three suggestions were put forward to promote the research and industrial development of edible dock, to improve people’s recognition of edible dock through propaganda and production of high-value products of edible dock; accelerate the research on the introduction and cultivation of edible dock, and promote intensive and large-scale planting; strengthen the research on the basic and applied technology of edible dock in animal husbandry and soil improvement.

  • WANGChangmi, LUOZhiming, LIYinhu, WANGXiaoyan, ZHANGRongyue, LIJie, YINJiong, SHANHongli
    Chinese Agricultural Science Bulletin. 2025, 41(4): 114-118. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0277

    Sugarcane pokkah boeng disease is a fungal disease caused by multiple species of Fusarium. In order to clarify the pathogen species of sugarcane pokkah boeng disease in Yunnan, thirty-three samples of sugarcane pokkah boeng disease were collected from Kaiyuan and Menglian in Yunnan, and strains FS1 and FS2 were isolated and purified, and their DNA was extracted; the primers of transcription elongation factor (EF-1α), tubulin gene (TUB2), polymerase gene (RPB2) were used for PCR amplification of the isolated strains. The result was that a clear and bright band consistent with the target band was obtained, and the products were sequenced and analyzed by BLAST on the NCBI website, the EF-1α, TUB2 and RPB2 sequences of strains FS1 and FS2 were compared with EF-1α (accession number: MK609907.1), TUB2 (accession number: MT011039.1) and RPB2 (accession number: MW238849.1) of Fusarium sacchari with 100% similarity and coverage. Phylogenetic trees of strains FS1 and FS2 were constructed by maximum likelihood method with MEGA6.0 software, and the results showed that FS1 and FS2 clustered on the same branch with F. sacchari. Therefore, based on the morphological characteristics of strains FS1 and FS2 and the results of molecular biological identification, the pathogen of sugarcane pokkah boeng disease was identified as F. sacchari. F. sacchari spores were inoculated with ‘Yunzhe 08-1609’, and the symptoms of leaf regression and leaf yellowing appeared on the 7th day of inoculation, the infected leaves were isolated and sequenced again. The sequence similarity and coverage between EF-1α of the isolated strain and EF-1α of F. sacchari (accession number: MK609907.1) were 100%. F. sacchari was shown to be the causal agent of sugarcane pokkah boeng disease in Kaiyuan and Menglian.

  • LINJieying, CUIYiping, HUANGFeng, MUGuiping, YUEMaofeng, SONGXiaobing
    Chinese Agricultural Science Bulletin. 2024, 40(36): 126-131. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0354

    In order to effectively control Huanglongbing (HLB) and reduce the loss of HLB to the global citrus industry, this study reviewed the latest research on the control of HLB in recent years. The results showed that there were no effective agents and disease-resistant varieties. At present, the main methods of controlling HLB include traditional ‘three fast methods’, namely planting disease-free seedlings to control HLB from the sources, preventing and controlling Diaphorina citr to block its transmission path, and digging infected trees to eliminate the infection source; expanded physical control technologies include seedling virus-free, light, steam heat treatment, etc.; multi-directional chemical drug control technologies include antibiotics, nanomaterials, immune inducers and antimicrobial peptides; emerging biological control technologies include various probiotics, microbial preparations, etc. Finally, the application prospect of soil amendment and biological control agent combined treatment of HLB and citrus transgenic disease resistance technology based on genetic improvement was prospected, to provide theoretical basis and practical reference for effective control of HLB.

  • LIXinghua, CAIXingxing, WANGHuan, ZHANGSheng, LIUXia, ZHOUQiang
    Chinese Agricultural Science Bulletin. 2025, 41(3): 1-8. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0112

    The aim was to explore the growth and development characteristics of ‘Si te’ late indica rice and provide theoretical support for its promotion and application. Many years field tests were conducted, with the typical ‘Si te’ late indica rice variety ‘Xiyou 447’ and the main rice variety ‘Jinyou 207’ in the middle and lower reaches of Yangtze River as experimental materials. Yield and growth characteristics were measured and breeding progress of ‘Si te’ late indica rice was summarized. Whole growth period of ‘Xiyou 447’ was 3-5 days shorter than that of ‘Jinyou 207’, and yield was increased by 7.5%-19.4%. Yield advantage of ‘Xiyou 447’ was mainly due to its synergistic improvement of dry matter accumulation and harvest index, as well as the higher total grain number per spike. The initial and terminal time of fast accumulation period of dry matter, nitrogen, phosphorus and potassium of ‘Xiyou 447’ were later than ‘Jinyou 207’, and mean accumulation speed was higher than ‘Jinyou 207’. Methane emission flux of ‘Xiyou 447’ was higher than ‘Jinyou 207’ at vegetative growth stage, but lower than ‘Jinyou 207’at heading and filling stage. In addition, ‘Xiyou 447’ had higher lodging resistance, which was mainly due to its lower plant height, shorter basal internode and higher stem wall thickness. ‘Si te’ late indica rice has short growth period, high yield, low methane emission and strong lodging resistance, so it has a good prospect for promotion and application.

  • YAOWeige, FANLi, SUNRui, KANGJie, GEJingping
    Chinese Agricultural Science Bulletin. 2025, 41(6): 88-93. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0397

    Extracellular vesicles (EVs) are small vesicles released into the extracellular matrix by cells and retain a high compositional similarity to the cell membrane. Almost all types of cells are capable of secreting vesicles, and those produced by bacteria are usually referred to as bacterial extracellular vesicles. Vesicles play an important role in agriculture and environmental protection. To gain a deeper insight into the function of vesicles within the realm of environmental protection, a review was conducted on the types and composition of vesicles, extraction methods, production, secretion and regulation mechanisms and their roles in degrading pesticide wastes in soils. Moreover, the importance of vesicles in the relationships among bacteria and between pathogens and crops, as well as their potential applications in the field of environmental protection and agricultural production were discussed in depth. Finally, the future research direction was prospected, and it was believed that the function of vesicles should be deeply understood and the role of vesicles in the ecosystem category should be studied, and the role of vesicles in the ecosystem should be utilized to make more contributions to environmental protection.

  • HUANGJu, DENGHua, HOUYuee, BAJuan, YANGHong
    Chinese Agricultural Science Bulletin. 2025, 41(12): 158-164. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0673

    As an important economic shrimp species, the Litopenaeus vannamei is frequently affected by bacterial diseases, especially Vibriosis (including Vibrio parahaemolyticus, Vibrio alginolyticus, Vibrio harveyi, Vibrio cholerae, etc.) during intensive aquaculture. This represents a significant risk to the long-term sustainability of aquaculture. With the widespread use of antibiotics, resistance genes of pathogenic bacteria are prevalent and widespread in the aquatic environment, posing new challenges to the prevention and treatment of Vibriosis. Therefore, it is extremely important to emphasize the maintenance of aquaculture environment and water quality monitoring. This review describes a series of biological control measures, including the use of biofloc technology, probiotics, antimicrobial peptides, quorum sensing inhibitors, and the use of biological control methods such as Bdellovibrio and like organisms and bacteriophage. The combination of biofloc technology and probiotics can improve water quality and enhance immunity. However, it is greatly affected by the environment, making it difficult to control the stability of bacteria flora. Antimicrobial peptides exhibit a broad spectrum of antibacterial activity, and they are safe and not easily resistant to drugs. However, they are difficult to preserve and have a high cost. Quorum-sensing inhibitors provide precise prevention and treatment with minimal environmental impact, but the mechanism research on them is limited. Bdellovibrio are effective at lysing Gram-negative bacteria but have a poor effect on Gram-positive bacteria and grow slowly. Bacteriophages are highly specific but have a narrow host range. Although these biological control measures are less effective than antibiotics, they are environmentally friendly, less prone to drug resistance, and aim to reduce chemical drug dependency, protect the ecosystem, and improve aquaculture efficiency. In the future, innovative and sustainable biological control technologies should be developed to address the challenges posed by pathogenic bacterial resistance and environmental protection.

  • WANGHaoling, ZHUJiaonan, CHENQi, DINGJiasheng, WANGXibo, LIHaitian, ZHANGKai, XIELixia, GUOWenxiu, WANGGuiping, YUYi
    Chinese Agricultural Science Bulletin. 2025, 41(10): 133-140. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0508

    To screen out the better agents for controlling the eggs and larvae of Tuta absoluta, the leaf-dipping method was employed to assess the indoor toxicity of 11 agents, as well as the synergistic effects of mixtures of biopesticides and chemical pesticides. The findings revealed the following toxicity rankings of different agents on the eggs of T. absoluta in the laboratory: emamectin benzoate> abamectin> spinetoram> indoxacarb> rotenone> matrine> beta-cypermethrin·emamectin benzoate> azadirachtin> Metarhizium anisopliae CQMa421> Bacillus thuringiensis> Beauveria bassiana ZJU435. Regarding the toxicity to the larvae of T. absoluta, the ranking was: emamectin benzoate> abamectin> spinetoram> matrine> rotenone> beta-cypermethrin·emamectin benzoate> indoxacarb> azadirachtin> Metarhizium anisopliae CQMa421> Beauveria bassiana ZJU435> Bacillus thuringiensis. Metarhizium anisopliae CQMa421, Beauveria bassiana ZJU435, and Bacillus thuringiensis were each blended with emamectin benzoate, spinetoram, and indoxacarb at active-ingredient ratios of 1:9, 3:7, 5:5, 7:3, and 9:1 to evaluate the synergistic effects on the eggs of T. absoluta. When Metarhizium anisopliae CQMa421and indoxacarb were combined at an active-ingredient ratio of 9:1, the co-toxicity coefficient reached its peak at 204.90, demonstrating the most pronounced synergistic effect. The tests indicated that emamectin benzoate, avermectin, and spinetoram exerted high toxicity on both the eggs and larvae of T. absoluta. The mixtures of Metarhizium anisopliae CQMa421, Beauveria bassiana ZJU435, and Bacillus thuringiensis with emamectin benzoate, spinetoram, and indoxacarb manifested synergistic effects, thereby enhancing the control of T. absoluta and reducing the reliance on chemical pesticides.

  • HUJunyou, LIYiyong, DUJianjun
    Chinese Agricultural Science Bulletin. 2024, 40(29): 131-137. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0126

    This study aims to delve into the current research status and application potential of ultra-high temperature composting technology in the field of livestock and poultry manure treatment. By analyzing pilot studies on ultra-high temperature composting, engineering cases of ultra-high temperature composting, and the quality and application effects of ultra-high temperature compost products, the results show that exogenous heating and the addition of hyperthermophilic bacterial agents are key factors in achieving ultra-high temperature composting, with the addition of hyperthermophilic bacterial agents being particularly crucial. The study indicates that ultra-high temperature composting is suitable for treating livestock and poultry manure of different scales and types, demonstrating economic feasibility. Moreover, the products of ultra-high temperature composting meet the standards for organic fertilizers in China and have shown good effects in cultivation, indicating broad prospects for promotion and application. However, there is still work to be done in exploring and utilizing microbial strain resources for ultra-high temperature composting and demonstrating the field application of ultra-high temperature compost products.

  • HUAYang, ZHOULiuliu, CHENYuanyuan, LIMingwan, LAIYong, DINGShen, YANGChaochen, ZHANGDangquan
    Chinese Agricultural Science Bulletin. 2024, 40(36): 69-76. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0090

    The development of dye industry makes the treatment of dye waste liquid a challenge for environmental protection. Due to the high specific surface area and rich surface functional groups, biochar has excellent performance in adsorption of waste liquid dye substances, which makes it an efficient, economical and environmentally friendly adsorption material. This paper reviewed the adsorption mechanism and influencing factors of biochar in the dye adsorption process. It was pointed out that: (1) the adsorption mechanism of biochar on dye waste liquid including hydrogen bonding, π-π interaction, electrostatic interaction, coordination and ion exchange, jointly determined the interaction and adsorption efficiency of biochar and dye molecules. (2)The factors affecting the adsorption capacity of biochar included the raw materials, modification methods and preparation processes of biochar. (3)The properties of waste liquid, such as solution pH and ion concentration, also affected the adsorption capacity of biochar for dyes. Finally, the problems in the current biochar adsorption research, such as the single research object, the process and cost, and the impact on environment, had yet to be solved. This paper provides a reference for subsequent research to promote the practical application of biochar in the treatment of dye waste liquid.

  • LIUZidan, HUBinbin, CHENYuchang, ZHANGJinglin, FEILina, LINJinquan, CHENYi, HEChenggang, JIANGYonglei
    Chinese Agricultural Science Bulletin. 2025, 41(4): 134-143. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0402

    In order to clarify the baking characteristics of the US-introduced tobacco variety ‘NC297’, the traits of color characterization, yellowing and browning, water loss, chlorophyll degradation, and polyphenol oxidase activity of different parts of the tobacco leaves in the dark-box test were investigated by using the intensive baking room and dark-box test method with ‘NC297’ as the material. The results showed that: (1) in the dark-box test, the yellowing degree of the middle and lower leaves was close to 100% at 96 h, while the upper leaves were not completely yellowed until more than 120 h, indicating that the baking ease of the middle and lower leaves of ‘NC297’ was moderate, but the baking ease of the upper leaves was poor. (2) During the baking process, the polyphenol oxidase activity of the upper fresh tobacco leaves of ‘NC297’ was 0.46 ∆OD398 nm/(g·min), significantly higher than that of the middle and lower leaves of ‘NC297’ which was 0.22 ∆OD398 nm/(g·min), indicating that the middle and lower leaves of ‘NC297’ were more resistant to baking, and the upper leaves were moderately resistant to baking. However, the browning degree of the lower leaves was close to 30% at 144 h, which indicated that the browning degree of the lower leaves among different parts of the tobacco was relatively poor. (3) In terms of chemical composition, with the increase of baking time, total sugar, reducing sugar and total amino acid content gradually increased, while total nitrogen, protein and starch content gradually decreased. To summarize, ‘NC297’ has medium baking ease in the middle and lower leaves, poor baking ease in the upper leaves, the order of baking resistance is middle leaves> upper leaves> lower leaves, and the chemical compositions of the flue-cured leaves are more coordinated, and the quality is significantly improved.

  • SUNGuangtao, BAOGuirong, TAIJicheng, SARula, LIUNaijia, YUMiao, LIAnning
    Chinese Agricultural Science Bulletin. 2025, 41(5): 7-12. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0290

    In order to study the influence of maize-peanut intercropping on crop and soil characteristics, this paper sets up the root separation test of corn and peanut potted plants to study the influence of maize and peanut intercropping on crop agronomic traits, physiological activities, soil microorganisms, soil enzyme activity and soil rapid nutrients. The results showed that maize-peanut intercropping affected the morphological and physiological indexes of crops. Plant height and relative chlorophyll content of peanut were increased by 71.4% and 11.3%, but root length, root weight and leaf weight were not significantly affected. Plant height, leaf fresh weight and root length of maize were increased by 43.9%, 122% and 45.6%, respectively. But there was no significant effect on the relative content of chlorophyll. Maize-peanut intercropping improved plant stress resistance, increased SOD and POD activities of peanut leaves by 66.7% and 129%, and decreased MDA content of peanut roots by 19.8%, respectively. The activities of SOD in leaves and roots of maize were increased by 39.9% and 17.0%, respectively, while MDA content in roots decreased by 61%. Maize-peanut intercropping changed soil available nutrient content, decreased peanut soil available N by 79.5%, but increased soil available P by 11.5%, and had no effect on soil available K content. It had no effect on maize soil available N and K, but decreased soil available P by 9.4%. Maize-peanut intercropping affected soil biological characteristics and increased soil enzyme activities, especially the alkaline phosphates activity. The soil alkaline phosphates activity in peanut and maize fields increased by 122% and 330%, respectively. The Maize-peanut intercropping could improve soil microenvironment and physiological activities of leaves and roots in seedling stage.

  • ZHUYuanjie, TANa, ZHAOWeiguo, ZHANGMengru, LIChengjun, HEMaochang
    Chinese Agricultural Science Bulletin. 2025, 41(6): 44-52. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0224

    This study investigated the drought resistant of different lines of Brassica napus, which provided germplasm resources for the breeding of drought resistant rapeseed varieties. Eight different genetic background lines of Brassica napus were used as experimental materials to simulate drought stress treatment with different concentrations of polyethylene glycol 6000 (PEG-6000). The SOD activity, CAT activity and MDA content were measured by colorimetric method, potassium permanganate titration method, and thiobarbituric acid method, respectively. The germination ratio and plant height of eight rapeseed lines both decreased with the increase of drought stress degree. However, the germination rate of ‘G32-1’ was between 96% and 98%, and it was almost unaffected. The plant height inhibition degree of‘G763-2’was the lightest (29.1%). The SOD activity of ‘G7-1’ showed the most significant decrease, with a decrease of 23.59 U/kg. Overall, the trend of SOD activity in ‘G32-1’ was higher than that in ‘G7-1’. The CAT activity of ‘Qingza No.1’ was relatively higher (1.16-1.48 mg/g), but the CAT activity of ‘G32-1’ was relatively lower (0.88-1.30 mg/g). The MDA content of ‘G7-1’ and ‘G32-1’ was at a relatively low level, which MDA content was 0.55-0.83 μmol/g and 0.47-1.14 μmol/g, respectively. In total, ‘G32-1’ had the strongest drought resistance and could be used as an excellent germplasm resource for cultivating drought resistant varieties of rapeseed.

  • WUYue’e, DUANHaiyan, JIANGGonghao
    Chinese Agricultural Science Bulletin. 2025, 41(4): 19-24. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0158

    To understand the research progress of colored rice and its related genes, the functions of colored rice were summarized, and the effects of Ra, Rc, Rd, OsC1 and OsB2 genes on the traits of colored rice were analyzed. These genes determine the red, black, and purple colors of rice grains by influencing the accumulation of anthocyanins and proanthocyanidins. In this paper, we point out the limitations of related rice color genes in rice breeding. And the current research is not systematic enough to make full use of the diversity of these genes and prove the role of these genes in other rice traits. It is believed that genome-wide association analysis and population genetics method can be used to systematically analyze the variation and expression patterns of these genes in different rice varieties, and provide data support for rice genetic improvement. We can also use genetic methods and modern biotechnology methods to explore the functions of these genes in other traits of rice, to provide theoretical basis for the improvement of multiple traits of rice.

  • LIZhixin, WANGLong, LIXin, TANNengzhi, CHENJingliang, CHENYujia, YANGYanjie, YANZhengnan, ZHANGYuhan
    Chinese Agricultural Science Bulletin. 2025, 41(4): 50-55. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0322

    In order to solve the negative influence of weak light in solar greenhouse on the yield and quality of strawberry in winter and spring in northern China, the supplementary light was set inside the greenhouse [supplementary light intensity was (20±3) μmol/(m2·s), supplementary light duration was 3 h/d, T1] for strawberries, and no supplementary light treatment was set as control (CK). The results showed that the supplementary light treatment significantly promoted the increase of plant height and photosynthetic pigment content in strawberry leaves, and the chlorophyll a content, chlorophyll b content, total chlorophyll content, and carotenoid content in strawberry leaves increased by 27.3%, 35.9%, 21.7%, and 19.4%, respectively. Absorption flux per reaction center (ABS/RC), trapped energy flux per RC (TR0/RC) and dissipation energy flux per RC (DI0/RC) decreased by 13.5%, 7.6%, and 20.0%, respectively, which indicated that the pigment unit of strawberry leaf antenna absorbed and captured less light energy, resulting in less light energy for electron transport. Compared with strawberry plants grown without supplementary light, the energy loss of photochemical reaction in strawberry leaves was significantly reduced by supplementary light. The contents of soluble protein, soluble sugar, and vitamin C in strawberry fruit treated with supplementary light increased by 56.1%, 6.8%, and 3.1%, respectively, compared with those treated without supplementary light. In terms of the influences of volatile substances, the nitrogen oxides, alkanes, sulphide, alcohols and aromatic compounds, alkanes and aliphatic groups increased by 15.3%, 16.2%, 10.6%, 6.8%, and 6.7%, respectively, compared with the no supplementary light treatment. In conclusion, solar greenhouse supplementary light treatment significantly promoted the growth of strawberry plants, the improvement of strawberry fruit quality and the accumulation of flavor substances.

  • XUShiqiang, LIJingyu, SUNMingyang, GUYan, WANGJihua
    Chinese Agricultural Science Bulletin. 2024, 40(36): 117-125. https://doi.org/10.11924/j.issn.1000-6850.casb2024-0755

    NAC (NAM, ATAF, and CUC) transcription factors play a crucial role in plant growth and development, as well as in responses to various abiotic and biotic stresses. This study aims to identify and analyze the NAC gene family in Andrographis paniculata. Using bioinformatics methods, NAC genes were identified from the A.paniculata genome, followed by analysis of their phylogenetic relationships, cis-acting elements, chromosome distribution, collinearity, and expression profiles under drought stress and MeJA treatment. A total of 91 NAC genes were identified in A.paniculata, with protein lengths ranging from 139 to 715 amino acids, unevenly distributed at both ends of the chromosomes. Subcellular localization predictions revealed that most of the genes were located in the nucleus. Phylogenetic analysis, based on the construction of a phylogenetic tree with Arabidopsis NAC proteins, divided these genes into 16 subfamilies. Intraspecies collinearity analysis identified 4 tandem duplication groups and 36 segmental duplication gene pairs within the A.paniculata NAC family. Based on the functional conservation of subfamilies, analysis of cis-acting elements, and transcriptome analysis under drought stress and MeJA treatment, NAC genes responsive to drought and andrographolide synthesis were identified. This study identified and analyzed the NAC gene family in A.paniculata, predicting genes related to drought response and andrographolide synthesis, laying the foundation for further functional research on NAC genes.

ISSN 1000-6850 (Print)
Started from 1984

Published by: China Association of Agricultural Science Societies