The Pathogen Causing Leaf and Stem Spot of Houttuynia cordata: Isolation and Identification

ZHANGZhongmei, XIEJie, ZHANGLei, YANGXiaoxiang, HUANGXiaoqin, DENGYue, HUZijin, YUYaoying, XIANYunxi, MAFan, LIUYong

Chin Agric Sci Bull ›› 2024, Vol. 40 ›› Issue (12) : 119-125.

PDF(1655 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1655 KB)
Chin Agric Sci Bull ›› 2024, Vol. 40 ›› Issue (12) : 119-125. DOI: 10.11924/j.issn.1000-6850.casb2023-0314

The Pathogen Causing Leaf and Stem Spot of Houttuynia cordata: Isolation and Identification

Author information +
History +

Abstract

To identify the pathogen species causing a noval desease of leaf spot and stem spot of Houttuynia cordata Thunb. in Guanghan City, Sichuan Province, and provides theoretical basis for the scientific management of this disease, the leaves and stems of diseased H. cordata were collected from Guanghan City, and the pathogen was isolated and identified by tissue isolation, pathogenicity testing, morphological characterization, and molecular identification based on ITS, tef1, cal and his3 gene sequences. The results indicate that the mycelium of the pathogen is gray-white to light brown. The conidiomata, which are produced in the late growth stage, can produce two types of conidia: fusiform to oval-shaped α-type conidia and filamentous or hook-shaped β-type conidia. Multiple gene cluster analysis showed that the pathogen formed an individual branch adjacent to the Diaporthe Sojae and D. phaseolorum branches, and formed a big branch with these two branches in the phylogenetic tree, and a new species named D. houttuynia was suggested to establish to accommodate this pathogen. According to morphology and molecular identification, the pathogen causing the noval desease of leaf spot and stem spot of H. cordata in Guanghan City was identified as D. houttuynia.

Key words

Houttuynia cordata / leaf spot / stem spot / isolation and identification / Diaporthe houttuynia

Cite this article

Download Citations
ZHANG Zhongmei , XIE Jie , ZHANG Lei , et al . The Pathogen Causing Leaf and Stem Spot of Houttuynia cordata: Isolation and Identification[J]. Chinese Agricultural Science Bulletin. 2024, 40(12): 119-125 https://doi.org/10.11924/j.issn.1000-6850.casb2023-0314

References

[1]
魏秀俭, 郭彦, 时明芝, 等. 绿色食药明珠—鱼腥草[J]. 中国食物与营养, 2006(1):56-57.
[2]
王江河, 秦思宇, 付娟, 等. 鱼腥草的应用研究概述[J]. 食品安全导刊, 2023(1):183-185.
[3]
李丹. 鱼腥草有效成分及抗结核作用研究进展[J]. 河南中医, 2020, 40(2):299-303.
[4]
李秀清. 中药鱼腥草的现代药理研究[J]. 黑龙江医药, 2014, 27(4):865-868.
[5]
洪纬. 食物、药物和景物:鱼腥草在传统中国的利用[J]. 中国农史, 2016, 35(6):111-120.
[6]
何刚. 药食两用鱼腥草规范化生产关键技术研究[D]. 成都: 成都中医药大学, 2014.
[7]
李涛, 伍贤进, 张圣喜, 等. 鱼腥草病虫害发生规律研究初报[J]. 安徽农学通报, 2006(9):142-144.
[8]
吴远惠, 赵宏, 班纪华, 等. 三种鱼腥草病害的鉴定与防治建议[J]. 长江蔬菜, 2007(2):18-19.
[9]
董宝成. 鱼腥草紫斑病(Nigrospora sp.)的研究[D]. 雅安: 四川农业大学, 2004.
[10]
高晋, 刘思睿, 赵致, 等. 鱼腥草褐斑病的病原及其生物学特性[J]. 菌物学报, 2020, 39(7):1215-1225.
在贵州省施秉县鱼腥草上发生一种新的叶斑类病害,有危害加重趋势。为明确该病的病原菌,本研究采用组织分离法和离体接种法进行了病原菌分离培养和致病性测定,通过形态特征观察及rDNA ITS和Tef1两个核苷酸片段序列分析,将该病菌鉴定为拟盘多毛孢Pestalotiopsis sp.,系鱼腥草上首次报告。对该病原菌的生物学特性进行了研究。发现葡萄糖和蛋白胨最适于该菌菌丝体生长,菌丝体最适生长温度为25℃,最适宜pH 8,病菌在玉米粉培养基上生长最快,光照有利于菌丝体生长。
[11]
赵茜. 鱼腥草炭疽病(Colletotrichum gloeosporioides)的研究[D]. 雅安: 四川农业大学, 2010:16-19.
[12]
周洁, 吴金平, 王明安, 等. 鱼腥草炭疽病病原鉴定及室内药剂筛选[J]. 南方农业学报, 2022, 53(10):2919-2927.
[13]
吕茹婧, 郑露, 黄俊斌. 鱼腥草叶斑病病原鉴定[A].中国植物病理学会2009年学术年会论文集[C]. 中国植物病理学会, 2009:69.
[14]
WHITE T J, BRUNS T, LEE S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]. PCR Protocols, 1990:315-322.
[15]
O’DONNELL K, KISTLER H C, CIGELNIK E, et al. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies[J]. Proc natl acad sci USA, 1998, 95:2044-2049.
Panama disease of banana, caused by the fungus Fusarium oxysporum f. sp. cubense, is a serious constraint both to the commercial production of banana and cultivation for subsistence agriculture. Previous work has indicated that F. oxysporum f. sp. cubense consists of several clonal lineages that may be genetically distant. In this study we tested whether lineages of the Panama disease pathogen have a monophyletic origin by comparing DNA sequences of nuclear and mitochondrial genes. DNA sequences were obtained for translation elongation factor 1alpha and the mitochondrial small subunit ribosomal RNA genes for F. oxysporum strains from banana, pathogenic strains from other hosts and putatively nonpathogenic isolates of F. oxysporum. Cladograms for the two genes were highly concordant and a partition-homogeneity test indicated the two datasets could be combined. The tree inferred from the combined dataset resolved five lineages corresponding to "F. oxysporum f. sp. cubense" with a large dichotomy between two taxa represented by strains most commonly isolated from bananas with Panama disease. The results also demonstrate that the latter two taxa have significantly different chromosome numbers. F. oxysporum isolates collected as nonpathogenic or pathogenic to other hosts that have very similar or identical elongation factor 1alpha and mitochondrial small subunit genotypes as banana pathogens were shown to cause little or no disease on banana. Taken together, these results indicate Panama disease of banana is caused by fungi with independent evolutionary origins.
[16]
CARBONE I, KOHN L M. A method for designing primer sets for speciation studies in filamentous ascomycetes[J]. Mycologia, 1999, 91(3):553-556.
[17]
CROUS P W, WINGFIELD M J, BURGESS T I, et al. Fungal planet description sheets: 469-557[J]. Persoonia, 2016, 37:218-403.
Novel species of fungi described in this study include those from various countries as follows: Australia: Apiognomonia lasiopetali on Lasiopetalum sp., Blastacervulus eucalyptorum on Eucalyptus adesmophloia, Bullanockia australis (incl. Bullanockia gen. nov.) on Kingia australis, Caliciopsis eucalypti on Eucalyptus marginata, Celerioriella petrophiles on Petrophile teretifolia, Coleophoma xanthosiae on Xanthosia rotundifolia, Coniothyrium hakeae on Hakea sp., Diatrypella banksiae on Banksia formosa, Disculoides corymbiae on Corymbia calophylla, Elsinoe eelemani on Melaleuca alternifolia, Elsinoe eucalyptigena on Eucalyptus kingsmillii, Elsinoe preissianae on Eucalyptus preissiana, Eucasphaeria rustici on Eucalyptus creta, Hyweljonesia queenslandica (incl. Hyweljonesia gen. nov.) on the cocoon of an unidentified microlepidoptera, Mycodiella eucalypti (incl. Mycodiella gen. nov.) on Eucalyptus diversicolor, Myrtapenidiella sporadicae on Eucalyptus sporadica, Neocrinula xanthorrhoeae (incl. Neocrinula gen. nov.) on Xanthorrhoea sp., Ophiocordyceps nooreniae on dead ant, Phaeosphaeriopsis agavacearum on Agave sp., Phlogicylindrium mokarei on Eucalyptus sp., Phyllosticta acaciigena on Acacia suaveolens, Pleurophoma acaciae on Acacia glaucoptera, Pyrenochaeta hakeae on Hakea sp., Readeriella lehmannii on Eucalyptus lehmannii, Saccharata banksiae on Banksia grandis, Saccharata daviesiae on Daviesia pachyphylla, Saccharata eucalyptorum on Eucalyptus bigalerita, Saccharata hakeae on Hakea baxteri, Saccharata hakeicola on Hakea victoria, Saccharata lambertiae on Lambertia ericifolia, Saccharata petrophiles on Petrophile sp., Saccharata petrophilicola on Petrophile fastigiata, Sphaerellopsis hakeae on Hakea sp., and Teichospora kingiae on Kingia australis. Brazil: Adautomilanezia caesalpiniae (incl. Adautomilanezia gen. nov.) on Caesalpina echinata, Arthrophiala arthrospora (incl. Arthrophiala gen. nov.) on Sagittaria montevidensis, Diaporthe caatingaensis (endophyte from Tacinga inamoena), Geastrum ishikawae on sandy soil, Geastrum pusillipilosum on soil, Gymnopus pygmaeus on dead leaves and sticks, Inonotus hymenonitens on decayed angiosperm trunk, Pyricularia urashimae on Urochloa brizantha, and Synnemellisia aurantia on Passiflora edulis. Chile: Tubulicrinis australis on Lophosoria quadripinnata. France: Cercophora squamulosa from submerged wood, and Scedosporium cereisporum from fluids of a wastewater treatment plant. Hawaii: Beltraniella acaciae, Dactylaria acaciae, Rhexodenticula acaciae, Rubikia evansii and Torula acaciae (all on Acacia koa). India: Lepidoderma echinosporum on dead semi-woody stems, and Rhodocybe rubrobrunnea from soil. Iran: Talaromyces kabodanensis from hypersaline soil. La Reunion: Neocordana musarum from leaves of Musa sp. Malaysia: Anungitea eucalyptigena on Eucalyptus grandis x pellita, Camptomeriphila leucaenae (incl. Camptomeriphila gen. nov.) on Leucaena leucocephala, Castanediella communis on Eucalyptus pellita, Eucalyptostroma eucalypti (incl. Eucalyptostroma gen. nov.) on Eucalyptus pellita, Melanconiella syzygii on Syzygium sp., Mycophilomyces periconiae (incl. Mycophilomyces gen. nov.) as hyperparasite on Periconia on leaves of Albizia falcataria, Synnemadiella eucalypti (incl. Synnemadiella gen. nov.) on Eucalyptus pellita, and Teichospora nephelii on Nephelium lappaceum. Mexico: Aspergillus bicephalus from soil. New Zealand: Aplosporella sophorae on Sophora microphylla, Libertasomyces platani on Platanus sp., Neothyronectria sophorae (incl. Neothyronectria gen. nov. ) on Sophora microphylla, Parastagonospora phoenicicola on Phoenix canariensis, Phaeoacremonium pseudopanacis on Pseudopanax crassifolius, Phlyctema phoenicis on Phoenix canariensis, and Pseudoascochyta novae-zelandiae on Cordyline australis. Panama: Chalara panamensis from needle litter of Pinus cf. caribaea. South Africa: Exophiala eucalypti on leaves of Eucalyptus sp., Fantasmomyces hyalinus (incl. Fantasmomyces gen. nov.) on Acacia exuvialis, Paracladophialophora carceris (incl. Paracladophialophora gen. nov.) on Aloe sp., and Umthunziomyces hagahagensis (incl. Umthunziomyces gen. nov.) on Mimusops caffra. Spain: Clavaria griseobrunnea on bare ground in Pteridium aquilinum field, Cyathus ibericus on small fallen branches of Pinus halepensis, Gyroporus pseudolacteus in humus of Pinus pinaster, and Pseudoascochyta pratensis (incl. Pseudoascochyta gen. nov.) from soil. Thailand: Neoascochyta adenii on Adenium obesum, and Ochroconis capsici on Capsicum annuum. UK: Fusicolla melogrammae from dead stromata of Melogramma campylosporum on bark of Carpinus betulus. Uruguay: Myrmecridium pulvericola from house dust. USA: Neoscolecobasidium agapanthi (incl. Neoscolecobasidium gen. nov.) on Agapanthus sp., Polyscytalum purgamentum on leaf litter, Pseudopithomyces diversisporus from human toenail, Saksenaea trapezispora from knee wound of a soldier, and Sirococcus quercus from Quercus sp. Morphological and culture characteristics along with DNA barcodes are provided.
[18]
GLASS N L, DONALDSON G C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes[J]. Appl environ microbiol, 1995, 61:1323-1330.
We constructed nine sets of oligonucleotide primers on the basis of the results of DNA hybridization of cloned genes from Neurospora crassa and Aspergillus nidulans to the genomes of select filamentous ascomycetes and deuteromycetes (with filamentous ascomycete affiliations). Nine sets of primers were designed to amplify segments of DNA that span one or more introns in conserved genes. PCR DNA amplification with the nine primer sets with genomic DNA from ascomycetes, deuteromycetes, basidiomycetes, and plants revealed that five of the primer sets amplified a product only from DNA of the filamentous ascomycetes and deuteromycetes. The five primer sets were constructed from the N. crassa genes for histone 3, histone 4, beta-tubulin, and the plasma membrane ATPase. With these five primer sets, polymorphisms were observed in both the size of and restriction enzyme sites in the amplified products from the filamentous ascomycetes. The primer sets described here may provide useful tools for phylogenetic studies and genome analyses in filamentous ascomycetes and deuteromycetes (with ascomycete affiliations), as well as for the rapid differentiation of fungal species by PCR.
[19]
苗明军, 耿庆林, 常伟, 等. 冬季嫩芽尖鱼腥草丰产栽培技术[J]. 四川农业科技, 2017(6):20-21.
[20]
苏彦, 叶红. 新时期小城镇产业联动发展思路及规划探究—以德阳广汉市西高镇为例[J]. 价值工程, 2017, 36(4):1-5.
[21]
徐杰, 曾昭君, 邓李红, 等. 鲜鱼腥草UPLC特征图谱及5种指标成分含量测定研究[J]. 天然产物研究与开发, 2020, 32(6):968-979.
[22]
焦金英, 姬星宇, 李自波, 等. 不同产地鱼腥草中4种活性成分分析评价[J]. 江苏农业科学, 2020, 48(1):193-199.
[23]
吴方华, 郭凤领, 齐传东, 等. 鱼腥草—大蒜苗周年高产高效生产模式[J]. 长江蔬菜, 2021, 23:38-40.
[24]
谭澍, 韩玉萍, 徐小燕, 等. 鱼腥草绿色健康高效栽培技术[J]. 长江蔬菜, 2019, 3:22-24.
[25]
齐帅, 查凌雁, 黄丹枫, 等. 鱼腥草种植技术创新发展[J]. 北方园艺, 2022(17):121-128.
PDF(1655 KB)

Accesses

Citation

Detail

Sections
Recommended

/