
Physiological Response and Molecular Mechanism of Salt Tolerance in Rice: A Review
ZHAOQing, OUYingzhuo, HUShiqin, ZHOUYuyang, GUOLongbiao, HAOZhiqi, MENGLijun, LIUChanghua
Chin Agric Sci Bull ›› 2024, Vol. 40 ›› Issue (12) : 94-103.
Abbreviation (ISO4): Chin Agric Sci Bull
Editor in chief: Yulong YIN
Physiological Response and Molecular Mechanism of Salt Tolerance in Rice: A Review
With the intensification of global climate change and land salinization, improving the ability of rice (Oryza sativa L.) to grow in saline and alkaline environments has become a key challenge for agricultural production. The realization of the strategy of " the adaptation of germplasm to land " requires a deep understanding of the salt tolerance mechanism of rice, then breeding improvement on this basis. In this study, we summarized the recent research results on salt tolerance regulatory genes in rice, and classified them functionally according to the biological processes involved. The perception of salt stress in rice and the subsequent activation of various physiological regulatory mechanisms, including osmotic regulation, ion homeostasis, antioxidant defense system and nutrient balance, were analyzed in detail. In this review, we focus on several key Salt stress signaling pathways in rice, including the SOS (Salt Overly Sensitive) pathway, MAPK (Mitogen-Activated Protein Kinase) cascade pathway and hormone regulatory pathway. These pathways play crucial roles in rice adaptation salt stress environment. By reviewing the existing literature, this review aims to provide a comprehensive overview of the salt tolerance regulatory genes and their functions in rice, provide scientific basis on breeding salt-tolerant rice on these grounds, and as a reference in improving the yield and quality of rice under saline and alkaline environments.
rice / salt stress / salt tolerance genes / ion homeostasis / signaling pathway
[1] |
Soil salinization and a degraded ecological environment are challenging agricultural productivity and food security. Rice (Oryza sativa), the staple food of much of the world’s population, is categorized as a salt-susceptible crop. Improving the salt tolerance of rice would increase the potential of saline-alkali land and ensure food security. Salt tolerance is a complex quantitative trait. Biotechnological efforts to improve the salt tolerance of rice hinge on a detailed understanding of the molecular mechanisms underlying salt stress tolerance. In this review, we summarize progress in the breeding of salt-tolerant rice and in the mapping and cloning of genes and quantitative trait loci (QTLs) associated with salt tolerance in rice. Furthermore, we describe biotechnological tools that can be used to cultivate salt-tolerant rice, providing a reference for efforts aimed at rapidly and precisely cultivating salt-tolerance rice varieties.
|
[2] |
Soil salinity is a serious menace in rice production threatening global food security. Rice responses to salt stress involve a series of biological processes, including antioxidation, osmoregulation or osmoprotection, and ion homeostasis, which are regulated by different genes. Understanding these adaptive mechanisms and the key genes involved are crucial in developing highly salt-tolerant cultivars. In this review, we discuss the molecular mechanisms of salt tolerance in rice—from sensing to transcriptional regulation of key genes—based on the current knowledge. Furthermore, we highlight the functionally validated salt-responsive genes in rice.
|
[3] |
|
[4] |
耿雷跃. 基于连锁和关联分析的水稻耐盐性QTL定位与候选基因发掘[D]. 北京: 中国农业科学院, 2020.
|
[5] |
赵记伍. 海稻86盐碱耐性鉴定及耐性特征解析[D]. 荆州: 长江大学, 2020.
|
[6] |
|
[7] |
Salinity has drastic effects on plant growth and productivity and is one of the major factors responsible for crop yield losses throughout the agricultural soils of the world. The mechanisms of salinity tolerance in plants are regulated by a set of inherent multigenes and prevalent environmental factors, which bring about a myriad of metabolic changes in each plant part. The stress-induced metabolic changes in the rice plant have been intensively studied, but extensively in plant parts such as stem, leaf, and root. However, little information exists in the literature about such stress-induced architectural and physiological changes in rice grain, a premier staple food of a large proportion of human population. Thus, the current review comprehensively describes the effects of salinity stress on rice grain composition including changes in carbohydrate, protein, fat, and mineral contents. Elucidation of salinity induced changes in rice grain composition would help to understand whether or not a nutritious and healthy staple food is available to human population from rice grown under saline environments.© 2019 Institute of Food Technologists®.
|
[8] |
Crop loss due to soil salinization is an increasing threat to agriculture worldwide. This review provides an overview of cellular and physiological mechanisms in plant responses to salt. We place cellular responses in a time- and tissue-dependent context in order to link them to observed phases in growth rate that occur in response to stress. Recent advances in phenotyping can now functionally or genetically link cellular signaling responses, ion transport, water management, and gene expression to growth, development, and survival. Halophytes, which are naturally salt-tolerant plants, are highlighted as success stories to learn from. We emphasize that () filling the major knowledge gaps in salt-induced signaling pathways, () increasing the spatial and temporal resolution of our knowledge of salt stress responses, () discovering and considering crop-specific responses, and () including halophytes in our comparative studies are all essential in order to take our approaches to increasing crop yields in saline soils to the next level.
|
[9] |
顾逸彪, 颜佳倩, 薛张逸, 等. 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究[J]. 作物杂志, 2023(2):67-76.
|
[10] |
Salt tolerance is an important constrain for rice, which is generally categorized as a typical glycophyte. Soil salinity is one of the major constraints affecting rice production worldwide, especially in the coastal areas. Susceptibility or tolerance of rice plants to high salinity is a coordinated action of multiple stress responsive genes, which also interacts with other components of stress signal transduction pathways. Salt tolerant varieties can be produced by marker-assisted selection or genetic engineering by introducing salt-tolerance genes. In this review, we have updated on mechanisms and genes which can help in transferring of the salt tolerance into high-yielding rice varieties. We have focused on the need for integrating phenotyping, genomics, metabolic profiling and phenomics into transgenic and breeding approaches to develop high-yielding as well as salt tolerant rice varieties. |
[11] |
刘鹏. 耐盐细菌对盐渍化土壤和水稻生长的影响[D]. 银川: 宁夏大学, 2021.
|
[12] |
伊嘉雯, 冯棣, 朱崴, 等. 不同品种水稻发芽阶段耐盐性对比研究[J]. 中国农学通报, 2022, 38(33):10-14.
为了对比不同品种水稻发芽阶段的耐盐性,筛选出耐盐性更强的品种,以0、0.3%、0.5% NaCl处理水稻种子,分析不同程度盐胁迫下9个水稻品种生长指标的差异。结果表明,在水稻发芽阶段,0.3%和0.5% NaCl处理下显著抑制其出芽和生长,其中‘9311’水稻品种变化最小。与无盐处理相比,仅在0.5% NaCl处理下的芽长和根长显著降低,降幅分别为11.9%和11.5%。盐分胁迫对水稻种子发芽率的抑制程度高低顺序为‘G1’>‘银香38’>‘津原U99’>‘软香粳’>‘金稻919’>‘津原77’>‘津原E28’>‘天隆粳2号’>‘9311’。综合分析结果显示,随着盐浓度的升高,水稻的生长发育受到明显抑制,在9个水稻品种中‘9311’的耐盐性最强。
|
[13] |
Salinity is among the harshest environmental stress conditions that negatively affects productivity of salt-sensitive rice. Since, germination is the most crucial phase in the life-cycle of plants, the present study was carried out to study the morpho-physiological traits associated with salinity stress. Evaluation of tolerance in four contrasting rice genotypes was assessed on the basis of specific morpho-physiological parameters including radicle emergence, seedling vigour index, germination index, mean germination time, radicle and plumule growth and seedling water uptake. Largely, our findings revealed that mean germination time (MGT) and seedling vigour index (SVI) are fast-screening procedures to test seedling performance in salt stress conditions. Salt sensitive genotypes showed higher MGT and lower SVI, confirming that these indices are good indicators of poor germination response. Salt-tolerant genotypes were shown to be inhibited to a lesser extent in alpha-amylase activity in spite of high concentrations of imposed NaCl stress, that correlated with better regulation of water-uptake and increased accumulation of total soluble sugar content. Exogenous supplementation of soluble sugars improved the germination rate in a salt sensitive genotype, Jyothi, confirming the importance of soluble sugars in signaling under NaCl stress conditions. Increased total phenols and flavonoids were observed to be relative to higher Total Antioxidant Capacity in salt tolerant genotypes underlying the significance of seed phenolic compounds in early germination response in NaCl stress conditions. Kagga, a landrace grown in coastal Karnataka performed comparably with that of salt tolerant rice, Pokkali. In conclusion, the determination of early seedling response may be utilized as a useful strategy to uncover genetic variation in rice germplasm to salinity stress.© 2023. The Author(s) under exclusive licence to The Botanical Society of Japan.
|
[14] |
|
[15] |
Alfalfa (Medicago sativa L.) has significant feed value and ecological improvement function of marginal land. The difference in the maturity period of seeds in the same lots may be a mechanism of environmental adaptation. Seed color is a morphological trait associated with seed maturity. A clear understanding of the relationship between the seed color and seed stress resistance is helpful for seed selection for marginal land.
|
[16] |
刘艳, 王宝祥, 邢运高, 等. 水稻品种资源苗期耐盐性评价指标分析[J]. 江苏农业科学, 2021, 49(17):75-79.
|
[17] |
孙平勇, 张武汉, 舒服, 等. 水稻资源芽期和苗期耐盐碱性综合评价及耐盐基因分析[J]. 生物工程学报, 2022, 38(1):252-263.
|
[18] |
张治振, 李稳, 周起先, 等. 不同水稻品种幼苗期耐盐性评价[J]. 作物杂志, 2020(3):92-101.
|
[19] |
Reproductive stage salinity tolerance is most critical for rice as it determines the yield under stress. Few studies have been undertaken for this trait as phenotyping was cumbersome, but new methodology outlined in this review seeks to redress this deficiency. Sixty-three meta-QTLs, the most important genomic regions to target for enhancing salinity tolerance, are reported. Although rice has been categorized as a salt-sensitive crop, it is not equally affected throughout its growth, being most sensitive at the seedling and reproductive stages. However, a very poor correlation exists between sensitivity at these two stages, which suggests that the effects of salt are determined by different mechanisms and sets of genes (QTLs) in seedlings and during flowering. Although tolerance at the reproductive stage is arguably the more important, as it translates directly into grain yield, more than 90% of publications on the effects of salinity on rice are limited to the seedling stage. Only a few studies have been conducted on tolerance at the reproductive stage, as phenotyping is cumbersome. In this review, we list the varieties of rice released for salinity tolerance traits, those being commercially cultivated in salt-affected soils and summarize phenotyping methodologies. Since further increases in tolerance are needed to maintain future productivity, we highlight work on phenotyping for salinity tolerance at the reproductive stage. We have constructed an exhaustive list of the 935 reported QTLs for salinity tolerance in rice at the seedling and reproductive stages. We illustrate the chromosome locations of 63 meta-QTLs (with 95% confidence interval) that indicate the most important genomic regions for salt tolerance in rice. Further study of these QTLs should enhance our understanding of salt tolerance in rice and, if targeted, will have the highest probability of success for marker-assisted selections.© 2021. The Author(s).
|
[20] |
黄洁, 白志刚, 钟楚, 等. 水稻耐盐生理及分子调节机制[J]. 核农学报, 2020, 34(6):1359-1367.
土壤钠盐积累导致的土壤盐渍化程度越来越严重,已成为制约水稻产量和品质的重要因素之一。钠离子是引起水稻盐胁迫伤害的主要离子,研究钠离子在水稻植株体内的吸收运输机制,及水稻应对盐胁迫的生理分子调节机制,有助于抗盐品种的选育以及盐碱地的综合治理与利用。本文综述了水稻对盐信号的感应及盐分在水稻体内的吸收转运特征;分析了盐分进入水稻机体后对植株形态及生长发育的影响;探讨了水稻为缓解盐分伤害,诱发的渗透调节、养分、抗氧化系统、激素等生理调节机制,以及通过抗逆蛋白差异性表达和耐盐相关基因应激表达,来控制水稻体内离子平衡,保护膜系统及光合系统的分子调节机制。同时,本文对提高水稻耐盐性提出了外源调控措施,并对该领域的研究进行了展望。
|
[21] |
|
[22] |
Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker-assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
|
[23] |
尹天娇. 外源海藻糖对水稻耐盐性的影响及OsTPP1基因在盐胁迫下的功能分析[D]. 哈尔滨: 东北农业大学, 2022.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
安硕, 姚玲娅, 张鹏, 等. OsPM1基因在水稻苗期受非生物胁迫响应时的作用及应用[J]. 复旦学报(自然科学版), 2022, 61(4):385-394.
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
<p>In this study, the role of the rice (<em>Oryza sativa</em> L.) histidine kinase OsHK3 in abscisic acid (ABA)-induced antioxidant defense was investigated. Treatments with ABA, H<sub>2</sub>O<sub>2</sub>, and polyethylene glycol (PEG) induced the expression of <em>OsHK3</em> in rice leaves, and H<sub>2</sub>O<sub>2</sub> is required for ABA-induced increase in the expression of <em>OsHK3</em> under water stress. Subcellular localization analysis showed that OsHK3 is located in the cytoplasm and the plasma membrane. The transient expression analysis and the transient RNA interference test in rice protoplasts showed that OsHK3 is required for ABA-induced upregulation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that OsHK3 functions upstream of the calcium/calmodulin-dependent protein kinase OsDMI3 and the mitogen-activated protein kinase OsMPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, OsHK3 was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, <em>OsrbohB</em> and <em>OsrbohE</em>, and the production of H<sub>2</sub>O<sub>2</sub> in ABA signaling. Our data indicate that OsHK3 play an important role in the regulation of ABA-induced antioxidant defense and in the feedback regulation of H<sub>2</sub>O<sub>2</sub> production in ABA signaling.</p><p> </p><p>Wen F, Qin T, Wang Y, Dong W, Zhang A, Tan M, Jiang M (2015) OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice. <strong>J Integr Plant Biol</strong> 57: 213–228. doi: 10.1111/jipb.12222</p>
|
[37] |
张晨, 叶晨曦, 熊二辉, 等. 水稻盐敏感突变体ssm1的生理指标分析[J]. 杭州师范大学学报(自然科学版), 2020, 19(4):391-397.
|
[38] |
|
[39] |
|
[40] |
|
[41] |
徐宁. MADS-box转录因子OsMADS25在水稻根系发育及高盐胁迫响应中的功能研究[D]. 重庆: 重庆大学, 2019.
|
[42] |
|
[43] |
|
[44] |
|
[45] |
吴君宇. 水稻MADS-box转录因子OsMADS25,OsMADS27和OsMADS57响应氮素信号调控根系生长发育的分子机理研究[D]. 杭州: 浙江大学, 2021.
|
[46] |
In plant cell, cations gradient in cellular compartments is maintained by synergistic action of various exchangers, pumps and channels. The Arabidopsis exchanger family members (AtCCX3 and AtCCX5) were previously studied and belong to CaCA (calcium cation exchangers) superfamily while none of the rice CCXs has been functionally characterized for their cation transport activities till date. Rice genome encode four CCXs and only OsCCX2 transcript showed differential expression under abiotic stresses and Ca2+ starvation conditions. The OsCCX2 localized to tonoplast and suppresses the Ca2+ sensitivity of K667 (low affinity Ca2+ uptake deficient) yeast mutant under excess CaCl2 conditions. In contrast to AtCCXs, OsCCX2 expressing K667 yeast cells show tolerance towards excess Na+, Li+, Fe2+, Zn2+ and Co2+ and suggest its ability to transport both mono as well as divalent cations in yeast. Additionally, in contrast to previously characterized AtCCXs, OsCCX2 is unable to complement yeast trk1trk2 double mutant suggesting inability to transport K+ in yeast system. These finding suggest that OsCCX2 having distinct metal transport properties than previously characterized plant CCXs. OsCCX2 can be used as potential candidate for enhancing the abiotic stress tolerance in plants as well as for phytoremediation of heavy metal polluted soil.
|
[47] |
|
[48] |
王镭, 才华, 柏锡, 等. 转OsCDPK7基因水稻的培育与耐盐性分析[J]. 遗传, 2008(8):1051-1055.
|
[49] |
Salt stress is one of the major factors limiting rice () production globally. Although several transporters involved in salt tolerance have been identified in rice, the mechanisms regulating their transport activity are still poorly understood. Here, we show evidence that a rice Mg transporter OsMGT1 is required for salt tolerance probably by regulating transport activity of OsHKT1;5, a key transporter for the removal of Na from the xylem sap at the root mature zone. Knockout of did not affect total Na uptake, but increased Na concentration in the shoots and xylem sap, resulting in a significant increase in salt sensitivity at low external Mg concentration (20-200 μm). However, such differences were abolished at a higher Mg concentration (2 mm), although the total Na uptake was not altered. was expressed in both the roots and shoots, but only that in the roots was moderately up-regulated by salt stress. Spatial expression analysis revealed that was expressed in all root cells of the root tips but was highly expressed in the pericycle of root mature zone. was also expressed in the phloem region of basal node, leaf blade, and sheath. When expressed in oocytes, the transport activity of OsHKT1;5 was enhanced by elevating external Mg concentration. Furthermore, knockout of in mutant background did not further increase its salt sensitivity. Taken together, our results suggest that Mg transported by OsMGT1 in the root mature zone is required for enhancing OsHKT1;5 activity, thereby restricting Na accumulation to the shoots.© 2017 American Society of Plant Biologists. All Rights Reserved.
|
[50] |
The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na(+) or Cl() exclusion, and the tolerance of tissue to accumulated Na(+) or Cl(). Our understanding of the role of the HKT gene family in Na(+) exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na(+) accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.
|
[51] |
王旭明, 赵夏夏, 黄露莎, 等. 盐胁迫下4个不同耐盐基因型水稻Na+、K+积累效应[J]. 热带作物学报, 2018, 39(11):2140-2146.
|
[52] |
Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re-establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen-activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt-induced stress signaling in plants. |
[53] |
|
[54] |
曾洋. OsHAK17在水稻钾分配及HtNHX在耐盐和铝胁迫中的功能解析[D]. 南京: 南京农业大学, 2018.
|
[55] |
徐淑英. 不同耐盐性水稻材料对盐胁迫的生理响应及分子机制[J]. 福建农业学报, 2022, 37(9):1225-1229.
|
[56] |
|
[57] |
田志杰. 盐碱胁迫下水稻磷素吸收利用转运特征的研究[D]. 北京: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2017.
|
[58] |
|
[59] |
The Salt Overly Sensitive (SOS) pathway plays an important role in the regulation of Na+/K+ ion homeostasis and salt tolerance in Arabidopsis thaliana. Previously, we reported that the calcium binding proteins SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN8 (SCaBP8) nonredundantly activate the protein kinase SOS2. Here, we show that SOS2 phosphorylates SCaBP8 at its C terminus but does not phosphorylate SOS3. In vitro, SOS2 phosphorylation of SCaBP8 was enhanced by the bimolecular interaction of SOS2 and SCaBP8 and did not require calcium ions. In vivo, this phosphorylation was induced by salt stress, occurred at the membrane, stabilized the SCaBP8-SOS2 interaction, and enhanced plasma membrane Na+/H+ exchange activity. When a Ser at position 237 in the SCaBP8 protein (the SOS2 phosphorylation target) was mutated to Ala, SCaBP8 was no longer phosphorylated by SOS2 and the mutant protein could not fully rescue the salt-sensitive phenotype of the scabp8 mutant. By contrast, when Ser-237 was mutated to Asp to mimic the charge of a phosphorylated Ser residue, the mutant protein rescued the scabp8 salt sensitivity. These data demonstrate that calcium sensor phosphorylation is a critical component of SOS pathway regulation of salt tolerance in Arabidopsis.
|
[60] |
|
[61] |
The Salt Overly Sensitive (SOS) pathway regulates intracellular sodium ion (Na+) homeostasis and salt tolerance in plants. Until recently, little was known about the mechanisms that inhibit the SOS pathway when plants are grown in the absence of salt stress. In this study, we report that the Arabidopsis thaliana 14-3-3 proteins λ and κ interact with SOS2 and repress its kinase activity. Growth in the presence of salt decreases the interaction between SOS2 and the 14-3-3 proteins, leading to kinase activation in planta. 14-3-3 λ interacts with the SOS2 junction domain, which is important for its kinase activity. A phosphorylation site (Ser-294) is identified within this domain by mass spectrometry. Mutation of Ser-294 to Ala or Asp does not affect SOS2 kinase activity in the absence of the 14-3-3 proteins. However, in the presence of 14-3-3 proteins, the inhibition of SOS2 activity is decreased by the Ser-to-Ala mutation and enhanced by the Ser-to-Asp exchange. These results identify 14-3-3 λ and κ as important regulators of salt tolerance. The inhibition of SOS2 mediated by the binding of 14-3-3 proteins represents a novel mechanism that confers basal repression of the SOS pathway in the absence of salt stress.
|
[62] |
Calcium is a universal secondary messenger that triggers many cellular responses. However, it is unclear how a calcium signal is coordinately decoded by different calcium sensors, which in turn regulate downstream targets to fulfill a specific physiological function. Here we show that SOS2-LIKE PROTEIN KINASE5 (PKS5) can negatively regulate the Salt-Overly-Sensitive signaling pathway in Arabidopsis. PKS5 can interact with and phosphorylate SOS2 at Ser, promote the interaction between SOS2 and 14-3-3 proteins, and repress SOS2 activity. However, salt stress promotes an interaction between 14-3-3 proteins and PKS5, repressing its kinase activity and releasing inhibition of SOS2. We provide evidence that 14-3-3 proteins bind to Ca, and that Ca modulates 14-3-3-dependent regulation of SOS2 and PKS5 kinase activity. Our results suggest that a salt-induced calcium signal is decoded by 14-3-3 and SOS3/SCaBP8 proteins, which selectively activate/inactivate the downstream protein kinases SOS2 and PKS5 to regulate Na homeostasis by coordinately mediating plasma membrane Na/H antiporter and H-ATPase activity.
|
[63] |
SOS2 (salt overly sensitive 2) is a serine/threonine protein kinase required for salt tolerance inArabidopsis thaliana. In this study, we identified the protein phosphatase 2C ABI2 (abscisic acid-insensitive 2) as a SOS2-interacting protein. Deletion analysis led to the discovery of a novel protein domain of 37 amino acid residues, designated as the protein phosphatase interaction (PPI) motif, of SOS2 that is necessary and sufficient for interaction with ABI2. The PPI motif is conserved in protein kinases of the SOS2 family (i.e., protein kinase S, PKS) and in the DNA damage repair and replication block checkpoint kinase, Chk1, from various organisms including humans. Mutations in the conserved amino acid residues in the PPI motif abolish the interaction of SOS2 with ABI2. We also identified a protein kinase interaction domain in ABI2 and examined the interaction specificity between PKS and the ABI phosphatases. We found that some PKSs interact strongly with ABI2 whereas others interact preferentially with ABI1. The interaction between SOS2 and ABI2 was disrupted by theabi2-1mutation, which causes increased tolerance to salt shock and abscisic acid insensitivity in plants. Our results establish the PPI motif and the protein kinase interaction domain as novel protein interaction domains that mediate the binding between the SOS2 family of protein kinases and the ABI1/2 family of protein phosphatases.
|
[64] |
The plasma membrane sodium/proton exchanger Salt-Overly-Sensitive 1 (SOS1) is a critical salt tolerance determinant in plants. The SOS2-SOS3 calcium-dependent protein kinase complex up-regulates SOS1 activity, but the mechanistic details of this crucial event remain unresolved. Here we show that SOS1 is maintained in a resting state by a C-terminal auto-inhibitory domain that is the target of SOS2-SOS3. The auto-inhibitory domain interacts intramolecularly with an adjacent domain of SOS1 that is essential for activity. SOS1 is relieved from auto-inhibition upon phosphorylation of the auto-inhibitory domain by SOS2-SOS3. Mutation of the SOS2 phosphorylation and recognition site impeded the activation of SOS1 in vivo and in vitro. Additional amino acid residues critically important for SOS1 activity and regulation were identified in a genetic screen for hypermorphic alleles.
|
[65] |
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
|
[66] |
Mitogen-activated protein kinase (MAPK) pathways have been implicated in signal transduction of both biotic and abiotic stresses in plants. In this study, we found that the transcript of a rice (Oryza sativa) MAPKK (OsMKK1) was markedly increased by salt stress. By examining the survival rate and Na(+) content in shoot, we found that OsMKK1-knockout (osmkk1) mutant was more sensitive to salt stress than the wild type. OsMKK1 activity in the wild-type seedlings and protoplasts was increased by salt stress. Yeast two-hybrid and in vitro and in vivo kinase assays revealed that OsMKK1 targeted OsMPK4. OsMPK4 activity was increased by salt, which was impaired in osmkk1 plants. In contrast, overexpression of OsMKK1 increased OsMPK4 activity in protoplasts. By comparing the transcription factors levels between WT and osmkk1 mutant, OsMKK1 was necessary for salt-induced increase in OsDREB2B and OsMYBS3. Taken together, the data suggest that OsMKK1 and OsMPK4 constitute a signaling pathway that regulates salt stress tolerance in rice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
|
[67] |
|
[68] |
赵昊阳, 朱俊杰. 植物激素对盐胁迫的响应、适应及调控机制研究进展[J]. 分子植物育种, 2023:1-22.
|
[69] |
韩笑, 马文东, 王桂玲, 等. 水稻耐盐碱生理与遗传机制研究进展[J]. 黑龙江农业科学, 2022(8):62-67.
|
[70] |
陈观杰. ABA缓解盐胁迫下水稻幼苗叶片和根系伤害的效应及生理机制[D]. 湛江: 广东海洋大学, 2022.
|
[71] |
|
[72] |
|
[73] |
Complex antagonistic interactions between abscisic acid (ABA) and brassinosteroid (BR) signalling pathways have been widely documented. However, whether or how ABA interacts synergistically with BR in plants remains to be elucidated. Here, we report that low, but not high, concentration of ABA increases lamina joint inclination of rice seedling, which requires functional BR biosynthesis and signalling. Transcriptome analyses confirm that about 60% of low-concentration ABA early response genes can be regulated by BR in the same directions. ABA activates BR signal in a fast, limited and short-term manner and the BR-biosynthesis regulatory gene, OsGSR1, plays a key role during this process, whose expression is induced slightly by ABA through transcriptional factor ABI3. Moreover, the early short-term BR signal activation is also important for ABA-mediated salt stress tolerance. Intriguingly, the process and effect of short-term BR signal activation were covered by high concentration of ABA, implying adaptive mechanisms existed in plants to cope with varying degrees of stress.
|
[74] |
Rice (Oryza sativa) germination and seedling establishment, particularly in increasingly saline soils, are critical to ensure successful crop yields. Seed vigor, which determines germination and seedling growth, is a complex trait affected by exogenous (environmental) and endogenous (hormonal) factors. Here, we used genetic and biochemical analyses to uncover the role of an APETALA2 (AP2)-type transcription factor, SALT AND ABA RESPONSE ERF1 (OsSAE1), as a positive regulator of seed germination and salt tolerance in rice by repressing the expression of ABSCISIC ACID-INSENSITIVE5 (OsABI5). ossae1 knockout lines exhibited delayed seed germination, enhanced sensitivity to abscisic acid (ABA) during germination and in early seedling growth, and reduced seedling salt tolerance. OsSAE1 overexpression lines exhibited the converse phenotype, with increased seed germination and salt tolerance. In vivo and in vitro assays indicated that OsSAE1 binds directly to the promoter of OsABI5, a major downstream component of the ABA signaling pathway and acts as a major regulator of seed germination and stress response. Genetic analyses revealed that OsABI5-mediated ABA signaling functions downstream of OsSAE1. This study provides important insights into OsSAE1 regulation of seed vigor and salt tolerance and facilitates the practical use of OsSAE1 in breeding salt-tolerant varieties suitable for direct seeding cultivation.© The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
|
[75] |
田蕾, 王娜, 张银霞, 等. 水稻耐盐相关转录因子研究进展[J]. 安徽农业科学, 2014, 42(23):7716-7717,35.
|
[76] |
刘莉. 盐胁迫下植物激素对水稻种子萌发及幼苗根系生长的调控机理研究[D]. 武汉: 华中农业大学, 2018.
|
[77] |
|
[78] |
Salt stress is one of the most important abiotic stress factors affecting plant growth and productivity in natural ecosystems. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early (within 72 h) salt stress response in leaves and roots. To this purpose, we subjected three Brassicaceae species, namely two halophytes-Cakile maritima and Thellungiella salsuginea--and a glycophyte--Arabidopsis thaliana- to short-term salt stress (400 mM NaCl). The results indicate that the halophytes showed a differential osmotic and ionic response together with an early and transient oxidative burst, which was characterized by enhanced hydrogen peroxide levels and subsequent activation of antioxidant defenses in both leaves and roots. In addition, the halophytes displayed enhanced accumulation of abscisic acid, jasmonic acid (JA) and ACC (aminocyclopropane-1-carboxylic acid, the precursor of ethylene) in leaves and roots, as compared to A. thaliana under salt stress. Moreover, the halophytes showed enhanced expression of ethylene response factor1 (ERF1), the convergence node of the JA and ethylene signaling pathways in both leaves and roots upon exposure to salt stress. In conclusion, we show that the halophytes C. maritima and T. salsuginea experience an early oxidative burst, improved antioxidant defenses and hormonal response not only in leaves but also in roots, in comparison to the glycophyte A. thaliana. This differential signaling response converging, at least in part, into increased ERF1 expression in both above- and underground tissues seems to underlay, at least in part, the enhanced tolerance of the two studied halophytes to salt stress.
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
Jasmonates (JAs) and ethylene (ET), often acting cooperatively, play essential roles in regulating plant defense against pests and pathogens. Recent research reviewed here has revealed mechanistic new insights into the mode of action of these hormones in plant abiotic stress tolerance. During cold stress, JAs and ET differentially regulate the C-repeat binding factor (CBF) pathway. Major JA and ET signaling hubs such as JAZ proteins, CTR1, MYC2, components of the mediator complex, EIN2, EIN3, and several members of the AP2/ERF transcription factor gene family all have complex regulatory roles during abiotic stress adaptation. Better understanding the roles of these phytohormones in plant abiotic stress tolerance will contribute to the development of crop plants tolerant to a wide range of stressful environments. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
|
[84] |
The plant hormone jasmonic acid (JA) has a crucial role in both host immunity and development in plants. Here, we report the importance of JA signaling in the defense system of rice. Exogenous application of JA conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice. Expression of OsJAZ8, a rice jasmonate ZIM-domain protein, was highly up-regulated by JA. OsJAZ8 interacted with a putative OsCOI1, which is a component of the SCF(COI1) E3 ubiquitin ligase complex, in a coronatine-dependent manner. OsJAZ8 also formed heterodimers with other OsJAZ proteins but did not form homodimer. JA treatment caused OsJAZ8 degradation and this degradation was dependent on the 26S proteasome pathway. Furthermore, the JA-dependent OsJAZ8 degradation was mediated by the Jas domain. Transgenic rice plants overexpressing OsJAZ8ΔC, which lacks the Jas domain, exhibited a JA-insensitive phenotype. A large-scale analysis using a rice DNA microarray revealed that overexpression of OsJAZ8ΔC altered the expression of JA-responsive genes, including defense-related genes, in rice. Furthermore, OsJAZ8ΔC negatively regulated the JA-induced resistance to Xoo in rice. On the basis of these data, we conclude that JA plays an important role in resistance to Xoo, and OsJAZ8 acts as a repressor of JA signaling in rice.
|
[85] |
The basic functions of plant-specific TIFY proteins as transcriptional regulators have been reported in plants. Some TIFY genes are responsive to abiotic stresses, but the functions of these genes in stress tolerance have seldom been reported. OsJAZ9 is a member of the JAZ subfamily which belongs to the TIFY gene family in rice (Oryza sativa). Suppression of OsJAZ9 resulted in reduced salt tolerance. The altered salt tolerance was mainly due to changes in ion (especially K(+)) homeostasis, which was supported by the altered expression levels of several ion transporter genes. The OsJAZ9-suppression rice plants showed increased sensitivity to jasmonic acid (JA) treatment. OsJAZ9 interacts with OsCOI1a, a component of the SCF(COI1) E3 ubiquitin ligase complex, in a coronatine-dependent manner, suggesting that OsJAZ9 is involved in the regulation of JA signaling. OsJAZ9 interacts with several bHLH transcription factors including OsbHLH062 via the Jas domain. OsbHLH062 can bind to an E-box in the promoters of the ion transporter genes such as OsHAK21, and most of these ion transporter genes are responsive to JA treatment. We found that OsJAZ9 can also interact with OsNINJA, a rice homolog of the Arabidopsis thaliana transcriptional repressor NINJA in JA signaling. Both OsJAZ9 and OsNINJA (Novel Interactor of JAZ) repressed OsbHLH062-mediated transcription activation. These results together suggest that OsJAZ9 acts as a transcriptional regulator by forming a transcriptional regulation complex with OsNINJA and OsbHLH to fine tune the expression of JA-responsive genes involved in salt stress tolerance in rice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
|
/
〈 |
|
〉 |