
Screening of Peanut Varieties with Natural Selenium-enrich
HUANGZhipeng, TANGXiumei, WUHaining, ZHANGZongji, ZHONGLi, MAOLingli, XUXianfa, MINGRi, HELiangqiong, ZHONGRuichun, HANZhuqiang, TANGRonghua, JIANGJing
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (6) : 38-43.
Abbreviation (ISO4): Chin Agric Sci Bull
Editor in chief: Yulong YIN
Screening of Peanut Varieties with Natural Selenium-enrich
In order to ascertain the influence of soil selenium content on peanut selenium content, a total of 19 peanut varieties were used as materials. Three discrete treatments of soil selenium content were employed, comprising 0.42 mg/kg (treatment A), 0.73 mg/kg (treatment B) and 1.08 mg/kg (treatment C). The impact of varying soil selenium levels on the selenium content and selenium enrichment coefficient of peanut seed kernels was evaluated. A field trial was conducted using a randomised block design. The results demonstrated considerable variability in the selenium content and selenium enrichment coefficients of the seed kernels of the different varieties in the different treatments, with ranges of 0.102-0.306 mg/kg and 11.32%-40.16%, respectively. The seed kernel selenium content was found to be consistent with the specified limit value for selenium content in selenium-enriched peanuts (0.05-0.5 mg/kg) as outlined in the regional standard of Guangxi (DB45T 1061-2014). The seed kernel selenium content of peanuts was found to be higher under treatment C, while the selenium enrichment coefficient of peanuts was higher under treatment A. Among the participating varieties in diverse treatments, the seed kernel selenium content and selenium enrichment factor of 'Guihuahei 1' were found to be the highest. 'Guihuahei 1' shows efficient and stable selenium enrichment ability in soils with different selenium contents, and is an excellent variety for producing natural selenium-rich peanuts.
peanut / selenium content in soil / natural selenium-rich / selenium content in seed kernel / selenium enrichment coefficient
[1] |
贺栋, 祁珊珊, 郑红星, 等. 硒的生理功能及富硒产品研究进展[J]. 食品研究与开发, 2023, 44(1):191-196.
|
[2] |
谭见安. 中华人民共和国地方病与环境图集[M]. 北京: 科学出版社, 1989.
|
[3] |
This paper reviewed the Se in the environment (including total Se in soil, water, plants, and food), the daily Se intake and Se content in human hair were also examined to elucidate Se distribution in the environment and its effects on human health in China. Approximately 51% of China is Se deficiency in soil, compared with 72% in the survey conducted in 1989. Low Se concentrations in soil, water, plants, human diet and thus human hair were found in most areas of China. The only significant difference was observed between Se-rich and Se-excessive areas for Se contents in water, staple cereal, vegetables, fruits, and animal-based food, no remarkable contrast was found among other areas (p>0.05). This study also demonstrated that 39-61% of Chinese residents have lower daily Se intakes according to WHO/FAO recommended value (26-34μg/day). Further studies should focus on thoroughly understanding the concentration, speciation, and distribution of Se in the environment and food chain to successfully utilize Se resources, remediate Se deficiency, and assess the Se states and eco-effects on human health.Copyright © 2017 Elsevier Ltd. All rights reserved.
|
[4] |
李杰, 钟晓宇, 赖俊翔, 等. 广西典型岩溶地区硒在土壤-农作物系统中累积特征及其影响因素[J]. 矿产与地质, 2022, 36(2):380-388.
|
[5] |
黄太庆, 江泽普, 梁潘霞, 等. 富硒花生品种筛选及外源调控花生富硒生产技术研究[J]. 土壤, 2018, 50(6):1198-1202.
|
[6] |
钟洪禄. 花生的富硒特性及硒形态分析的研究[D]. 沈阳: 辽宁大学, 2019.
|
[7] |
杨苛, 余江敏, 钟莉传, 等. 广西富硒花生生产及品种筛选研究进展[J]. 现代农业科技, 2020(21):8-11.
|
[8] |
周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3):319-336.
|
[9] |
张萍, 王方, 袁卫红, 等. 自然富硒花生种质资源的筛选[J]. 湖北农业科学, 2021, 60(S1):47-49.
|
[10] |
郭李怡, 邢颖, 潘丽萍, 等. 科技创新引领广西富硒产业高质量发展、助力乡村振兴的对策研究[J]. 科技促进发展, 2021, 17(10):1864-1868.
|
[11] |
蒋菁, 贺梁琼, 韩柱强, 等. 广西花生产业现状分析及其发展建议[J]. 南方农业学报, 2021, 52(6):1460-1467.
|
[12] |
欧阳卫卫, 范呈根, 钟祝秀, 等. 高油酸花生品种聚硒能力比较[J]. 江西农业学报, 2023, 35(3):7-11.
|
[13] |
徐聪, 刘媛媛, 孟凡乔, 等. 农产品硒含量及与土壤硒的关系[J]. 中国农学通报, 2018, 34(7):96-103.
植物硒是人类硒的主要来源。分析不同类型气候和土壤条件下,主要农产品的硒含量和富集能力,对于发展富硒农产品具有重要实践价值。本研究选择中国南方丰城和北方博山两类不同硒含量地区,对土壤和当地所生产的农作物产品进行采样分析。结果表明,土壤硒含量整体较高,是造成丰城地区同类农产品硒含量高于博山地区的主要原因,但并不是所有农产品硒含量与土壤硒呈正相关关系。丰城和博山地区的各类农产品中,韭菜硒含量最高,高于十字花科的小白菜和白萝卜,以及禾本科的玉米、小麦和水稻,后两类作物硒含量高于花生和大豆,辣椒和甘薯最低。博山地区中性和碱性土壤中,作物硒富集系数普遍高于丰城地区酸性土壤所生产的作物。区域富硒农业发展过程中,应针对性选择合适的作物品种,并根据当地的自然和土壤硒水平,制定相应的发展方案。
|
[14] |
冯德豪. 硒对大豆生长、籽粒及其制品硒含量和营养品质的影响研究[D]. 荆州: 长江大学, 2023.
|
[15] |
曹升, 陈会鲜, 严华兵, 等. 食用木薯天然富硒品种筛选及外源硒强化技术研究[J]. 西南农业学报, 2019, 32(10):2285-2291.
|
[16] |
裴英. 小麦硒含量控制基因的QTL定位及遗传分析[D]. 成都: 四川农业大学, 2017.
|
[17] |
朱薇, 刘庆, 杨守祥. 不同花生品种富硒能力[J]. 中国油料作物学报, 2016, 38(2):260-266.
|
[18] |
|
[19] |
姜吉梁, 刘有清, 磨冬枝, 等. 江西不同类型甘薯富硒高产品种筛选[J]. 江西农业大学学报, 2023, 45(5):1129-1137.
|
[20] |
张亚峰, 马强, 姚振, 等. 西宁盆地天然富硒作物的筛选与评价[J]. 山西农业科学, 2023, 51(7):764-770.
|
[21] |
张亚丽, 张志敏, 张继军, 等. 安康西部农田土壤硒形态及农作物富硒特征[J]. 西北地质, 2021, 54(3):229-235.
|
[22] |
龙泽东. 硒在天然富硒区恩施与石台土壤-作物-人体系统中的分布特征和健康效应研究[D]. 合肥: 中国科学技术大学, 2021.
|
/
〈 |
|
〉 |