Alleviating Effects of Glomus mosseae and Soil Reduction Sterilization on Continuous Cropping Obstacle of Cucumber Seedlings

HUANGHuan, FANYaping, SONGBaiquan, WANGChangxian

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (1) : 55-62.

PDF(1629 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1629 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (1) : 55-62. DOI: 10.11924/j.issn.1000-6850.casb2024-0142

Alleviating Effects of Glomus mosseae and Soil Reduction Sterilization on Continuous Cropping Obstacle of Cucumber Seedlings

Author information +
History +

Abstract

Orange peel was used as organic material and the additive amounts were 0%, 0.25% and 0.5% of soil weight respectively. The continuous cultivation soil was subjected to strong reduction sterilization, and then the ‘Mini’ fruit cucumber seedlings were cultivated on the sterilized soil via pot experiment. The seedlings were inoculated with Glomus mosseae during cultivation. The effects of G. mosseae and reduction sterilization on soil quality, seedling growth, nutrients uptake and rhizosphere microbial quantity were investigated. The results showed that the contents of organic matter, alkali-hydrolyzed nitrogen and pH were significantly increased by reduction sterilization. Compared with non-sterilization, the organic matter, alkali-hydrolyzed nitrogen and available phosphorus contents of soil treated by adding 0.25% orange peel were 1.05, 1.10 and 1.90 times respectively, and the pH increased by 0.17. At the same time, G. mosseae significantly promoted the growth of cucumber seedlings on unsterilized soil, and the leaf area, biomass and seedling quality index inoculated with G. mosseae on unsterilized soil were 1.29, 1.25 and 1.44 times more than those uninoculated with G. mosseae, respectively. The leaf area and biomass of seedlings grown on soil treated by adding 0.25% orange peel and uninoculated with G. mosseae were 1.02 and 1.22 times more than that on unsterilized soil inoculated with G. mosseae, respectively. In addition, regardless of soil sterilization or not, G. mosseae effectively improved the calcium, magnesium and iron nutrients status in shoots of seedlings, and increased the number of rhizosphere bacteria, while decreased the number of fungi. It was concluded that both inoculation with G. mosseae on unsterilized soil or strong reduction sterilization could effectively alleviate the growth obstacles of cucumber seedlings in.

Key words

Glomus mosseae / orange peel / strong reduction sterilization / cucumber / continuous cropping obstacle / alleviating / nutrient absorption / rhizosphere microbial

Cite this article

Download Citations
HUANG Huan , FAN Yaping , SONG Baiquan , et al. Alleviating Effects of Glomus mosseae and Soil Reduction Sterilization on Continuous Cropping Obstacle of Cucumber Seedlings[J]. Chinese Agricultural Science Bulletin. 2025, 41(1): 55-62 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0142

References

[1]
赵文. 黄瓜栽培的现状及其发展趋势[J]. 智慧农业导刊, 2022, 2(3):32-34.
[2]
苗锦山. 宏观和微观视角下我国设施蔬菜产业发展的问题和对策分析[J]. 北方园艺, 2018(4):185-190.
[3]
于泓, 卢维宏, 张乃明. 我国设施栽培土壤退化特征及修复技术研究进展[J]. 蔬菜, 2021(11):35-42.
[4]
苏一诺, 李孟滕, 陈西文, 等. 作物连作障碍及防控技术研究进展[J]. 黑龙江畜牧兽医, 2019(9):44-48.
[5]
朱文娟, 王小国. 强还原土壤灭菌研究进展[J]. 土壤, 2020, 52(2):223-233.
[6]
王广印, 郭卫丽, 陈碧华, 等. 强还原土壤灭菌法防控瓜菜土壤连作障碍效果的影响因素[J]. 中国瓜菜, 2023, 36(2):11-18.
[7]
陆羽, 白杨, 陈庭园, 等. 柑桔属水果皮渣资源化利用综述[J]. 现代园艺, 2021, 44(1):87-89.
[8]
REDECKER D, KODNER R, GRAHAM L E. Glomalean fungi from the Ordovician[J]. Science, 2000, 289:1920-1921.
Fossilized fungal hyphae and spores from the Ordovician of Wisconsin (with an age of about 460 million years) strongly resemble modern arbuscular mycorrhizal fungi (Glomales, Zygomycetes). These fossils indicate that Glomales-like fungi were present at a time when the land flora most likely only consisted of plants on the bryophytic level. Thus, these fungi may have played a crucial role in facilitating the colonization of land by plants, and the fossils support molecular estimates of fungal phylogeny that place the origin of the major groups of terrestrial fungi (Ascomycota, Basidiomycota, and Glomales) around 600 million years ago.
[9]
SMITH S E, READ D J. Mycorrhizal symbiosis[M]. London: Academic press, 2008:1-42.
[10]
LUGINBUEH L H, MENARD G N, KURUP S, et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant[J]. Science, 2017, 356:1175-1178.
Plants form beneficial associations with arbuscular mycorrhizal fungi, which facilitate nutrient acquisition from the soil. In return, the fungi receive organic carbon from the plants. The transcription factor RAM1 (REQUIRED FOR ARBUSCULAR MYCORRHIZATION 1) is crucial for this symbiosis, and we demonstrate that it is required and sufficient for the induction of a lipid biosynthetic pathway that is expressed in plant cells accommodating fungal arbuscules. Lipids are transferred from the plant to mycorrhizal fungi, which are fatty acid auxotrophs, and this lipid export requires the glycerol-3-phosphate acyltransferase RAM2, a direct target of RAM1. Our work shows that in addition to sugars, lipids are a major source of organic carbon delivered to the fungus, and this is necessary for the production of fungal lipids.Copyright © 2017, American Association for the Advancement of Science.
[11]
RAVNSKOV S, CABRAL C, LARSEN J. Mycorrhiza induced tolerance in Cucumis sativus against root rot caused by Pythium ultimum depends on fungal species in the arbuscular mycorrhizal symbiosis[J]. Biological control, 2020, 141:104133.
[12]
BOUTAJ H, MEDDICH A, ROCHE J, et al. The effects of mycorrhizal fungi on vascular wilt diseases[J]. Crop protection, 2022, 155:e105938.
[13]
DEY M, GHOSH S. Arbuscular mycorrhizae in plant immunity and crop pathogen control[J]. Rhizosphere, 2022, 22:e100524.
[14]
SALLAKU G, SANDÉN H, BABAJ I, et al. Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity[J]. Scientia horticulturae, 2019, 243:177-188.
[15]
MALHI G S, KAUR M, KAUSHIK P, et al. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco -friendly approach[J]. Saudi journal of biological sciences, 2021, 28(2):1465-1476.
[16]
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000:30-98,163-165,263-276.
[17]
那淑芝, 杨贵明. 四苯硼钠测定土壤速效钾比浊条件的改进[J]. 土壤肥料, 1991(4):41-42.
[18]
郝文英, 李良谟, 李振高, 等. 土壤微生物研究法[M]. 北京: 科学出版社, 1985:43-59.
[19]
PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhiza fungi for rapid assessment of infection[J]. Transactions of British mycological society, 1970, 55(1):158-161.
[20]
樊娅萍, 陈芳玲, 贺苗苗, 等. 强还原灭菌条件下添加橘皮对土壤性状与酶活性的影响[J]. 华北农学报, 2021, 36(S1):253-259.
探究土壤强还原灭菌条件下添加橘皮对土壤理化性状与酶活性的影响,为我国丰富的橘皮资源在农业生产中的有效利用提供理论依据。以橘皮为有机物料,采用土培试验的方法,橘皮添加量共设置3个水平(0,0.25%,0.50%),在土壤水达饱和后覆膜,室温灭菌40 d,研究了添加橘皮后土壤理化性状及相关酶活性的变化,并对土壤理化性状与酶活性进行了相关性分析。结果表明:与灭菌前相比,灭菌处理的土壤碱解氮、速效磷与有机质含量均显著增加,pH值显著上升;灭菌条件下,橘皮添加量为0.25%处理的土壤碱解氮、速效磷及有机质含量分别为无橘皮处理的1.10,1.22,1.11倍。此外,与灭菌前相比,土壤脲酶与磷酸酶活性也显著增强,灭菌条件下,橘皮添加量为0.25%处理的脲酶活性与0.50%处理的土壤磷酸酶活性分别为无橘皮处理的1.69,1.46倍。灭菌前,土壤脲酶活性与pH值呈显著负相关,灭菌后,脲酶活性与pH值转变为正相关关系,同时,添加橘皮处理的土壤脲酶活性与有机质也呈正相关,橘皮添加量为0.50%处理的土壤磷酸酶活性与速效磷含量呈显著正相关。因此,土壤强还原灭菌条件下,橘皮添加量为0.25%可显著改善土壤碱解氮与速效磷水平,而橘皮添加量为0.50%的土壤pH值显著上升,速效钾含量显著提高。土壤强还原灭菌时添加橘皮对提高土壤肥力是有益的。
[21]
魏光钰, 胡勇, 吴永琴, 等. 灭菌方式对植烟土壤微生物群落的影响[J]. 湖南农业大学学报(自然科学版), 2023, 49(6):652-660.
[22]
滕凯, 张清壮, 彭镜先, 等. 强还原土壤灭菌对烟草种植前后土壤化学性质及微生物群落结构的影响[J]. 烟草科技, 2022, 55(4):9-19.
[23]
MARTIN J P, FARMER W J, ERVIN J O. Influence of steam treatment and fumigation of soil on growth and elemental composition of avocado seedlings[J]. Soil science society of America journal, 1973, 37:56-60.
[24]
SHARMA K, MAHATO N, CHO M H, et al. Converting Citrus wastes into value -added products: Economic and environmently friendly approaches[J]. Nutrition, 2017, 34:29-46.
[25]
JI C Y, YE R Z, YIN Y F, et al. Reductive soil disinfestation with biochar amendment modified microbial community composition in soils under plastic greenhouse vegetable production[J]. Soil & tillage research, 2022, 218:105323.
[26]
闫宁, 战宇, 苗馨月, 等. 强还原土壤灭菌处理对人参连作土壤细菌群落结构及土壤酶活的影响[J]. 中国农业科技导报, 2022, 24(6):133-144.
强还原土壤灭菌(reductive soil disinfestation,RSD)和土壤熏蒸(soil fumigation,SF)是缓解人参连作障碍的常用方法。为研究2种方法对土壤细菌群落和土壤酶活性的影响,采用高通量测序技术和化学分析方法对强还原土壤灭菌加氯化苦熏蒸(RSD+SF)、强还原土壤灭菌加复合菌(RSD+F)、氯化苦熏蒸加复合菌(SF+F)3种方式改良的土壤细菌群落和土壤酶活性进行分析。结果表明,RSD+F组细菌群落多样性与丰富度均最高,SF+F组均最低,3组拥有相同细菌菌属431个。RSD+SF组中,丰富度最高的细菌为Gemmatimonas,其丰富度为9.17%;RSD+F组中丰富度最高的细菌为norank_f_noranko_Gaiellales,其丰富度为8.72%;RSD+F组中丰富度最高的细菌为Bacillus,其丰富度为9.16%;Bacillus为3种方式改良土壤前10种优势菌群中共有的优势菌群。土壤酶活性与土壤细菌群落结构存在显著性关系,随着生长时间的增加,不同方式改良后的连作人参土壤酶活性均具有显著性差异(P<0.05)。由此可知,3种土壤改良方式均能在不同程度地增加有益细菌属的丰富度并提高土壤酶活性,其中RSD+SF组和RSD+F组的有益细菌属数量及土壤酶活性均高于SF+F组。
[27]
饶德安, 刘潘洋, 邹路易, 等. 长期连作及强还原土壤灭菌处理对烤烟根际土壤真菌群落的影响[J]. 中国土壤与肥料, 2022(4):47-56.
[28]
黄新琦, 温腾, 孟磊, 等. 土壤强还原过程产生的有机酸对土传病原菌的抑制作用[J]. 植物保护, 2015, 41(6):38-43.
[29]
黄新琦, 温腾, 孟磊, 等. 土壤快速强烈还原对于尖孢镰刀菌的抑制作用[J]. 生态学报, 2014, 34(16):4526-4534.
[30]
刘星, 张书乐, 刘国锋, 等. 土壤生物消毒对甘肃省中部沿黄灌区马铃薯连作障碍的防控效果[J]. 应用生态学报, 2015, 26(4):1205-1214.
采用有机物料添加、土壤灌水和表土覆盖相结合的土壤生物消毒方法来防控甘肃省中部沿黄灌区马铃薯连作障碍,系统性地评估生物消毒对连作马铃薯块茎产量、植株生长发育及土传病害抑制、微生物区系和酶活性等土壤生化性质的影响.结果表明: 生物消毒处理比对照块茎产量和植株生物量分别显著增加16.1%和30.8%,植株发病率和病薯率分别下降68.0%和46.7%.生物消毒处理显著提高了连作马铃薯叶绿素含量和主茎分枝数,改善了根系形态结构.在播前土壤生物消毒处理过程中,土壤pH值和细菌/真菌显著增加,真菌和镰刀菌数量大幅度下降,而细菌和放线菌数量则变化不明显.在马铃薯各生育时期,生物消毒处理土壤真菌数量均远低于对照,镰刀菌数量也低于对照,但随着生育进程的推进,镰刀菌数量呈现逐渐回升的趋势.无论是在生物消毒处理过程中还是马铃薯整个生育期,生物消毒处理的土壤相关酶活性与对照相比变化均不明显.总体上,土壤生物消毒的方法在克服马铃薯连作障碍上具有较大的应用潜力.
PDF(1629 KB)

Accesses

Citation

Detail

Sections
Recommended

/