Transcriptome Analysis in Roots of Sweetpotato with Different Drought Tolerance

WANGBaoqing, XIEBeitao, ZHANGLiming

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (9) : 47-55.

PDF(1543 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1543 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (9) : 47-55. DOI: 10.11924/j.issn.1000-6850.casb2024-0439

Transcriptome Analysis in Roots of Sweetpotato with Different Drought Tolerance

Author information +
History +

Abstract

In order to reveal the difference between thick root (TR) and storage root (SR) of sweetpotato with difference drought tolerance from transcriptional level, and further explicit the mechanism of roots differentiation and drought tolerance by simulating field drought in dry shed with artificial water control, two varieties including ‘Jishu21’ (‘JS21’ ) with strong drought tolerance and ‘Jizishu1’ (‘JZ1’) with weak drought tolerance were chosen as research materials. Transcriptome analysis of sweet potato thick root and storage root was carried out. The results indicated GO classification of differentially expressed genes (DEGs) of the two varieties was similar to that of KEGG enrichment. Under drought stress, 84 DEGs between SR and TR of ‘JS21’ mainly enriched the accumulation of starch and sucrose metabolic pathway, while 112 DEGs between SR and TR of ‘JZ1’ mainly enriched ribosomal metabolic pathway. Among different varieties, 224 DEGs between ‘JS21’ and ‘JZ1’ were found in SR, but 204 DEGs between ‘JS21’ and ‘JZ1’ were counted in TR, and all mainly enriched ribosomal metabolic pathway. Further analysis by transcription factors and hormones metabolism showed that ARF-like transcription factors in storage root and NAC-like transcription factors in thick root of ‘JS21’ were more differentially expressed than ‘JZ1’ under drought stress. The expression of genes involved in carotenoid biosynthesis pathway was up-regulated, while genes involved in brassinosteroid biosynthesis pathway were down-regulated in both thick root and storage root of ‘JS21’. In the same variety, the gene expression of α-linolenic acid metabolic pathway in ‘JS21’ storage root was up-regulated compared with thick root. In conclusion, sweetpotato with strong drought tolerance can maintain starch and sucrose metabolism under drought conditions by coordinating the expression of drought tolerance genes and growth-related transcription factors, balancing drought tolerance hormones (ABA, JA) and growth related hormones (IAA, BR), so as to improve the drought resistance and ensure the formation of yield.

Key words

sweetpotato / drought / roots / transcriptome / brassinosteroid / transcription factors

Cite this article

Download Citations
WANG Baoqing , XIE Beitao , ZHANG Liming. Transcriptome Analysis in Roots of Sweetpotato with Different Drought Tolerance[J]. Chinese Agricultural Science Bulletin. 2025, 41(9): 47-55 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0439

References

[1]
AHN Y O, KIM S H, KIM C Y, et al. Exogenous sucrose utilization and starch biosynthesis among sweetpotato cultivars[J]. Carbohydrate research, 2010, 345(1):55-60.
[2]
FAO. Datebase of food and agriculture organization of the united nations statistics division for crop[DB/OL]. http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E, 2023-09-10.
[3]
马代夫. 世界甘薯生产现状与发展预测[J]. 世界农业, 2001(1):17-19.
[4]
BERGER J, PALTA J, VADEZ V. Review: an integrated framework for crop adaptation to dry environments: responses to transient and terminal drought[J]. Plant science, 2016, 253(12):58-67.
[5]
张海燕, 解备涛, 段文学, 等. 不同时期干旱胁迫对甘薯光合效率和耗水特性的影响[J]. 应用生态学报, 2018, 29(6):1943-1950.
在2014&mdash;2015年遮雨棚下种植甘薯品种&lsquo;济薯21&rsquo;,以全生育期正常灌水(WW)为对照,研究了全生育期(DS)、发根分枝期(DS<sub>1</sub>)、蔓薯并长期(DS<sub>2</sub>)和快速膨大期(DS<sub>3</sub>)干旱胁迫对甘薯光合作用、产量和耗水特性的影响.结果表明: DS、DS<sub>1</sub>、DS<sub>2</sub>和DS<sub>3</sub>的生物产量分别比WW降低31.3%、21.2%、19.6%和7.7%,收获指数分别降低19.9%、14.5%、14.1%和6.5%,薯干产量分别降低45.3%、33.1%、31.3%和14.2%.栽后100 d,DS、DS<sub>1</sub>、DS<sub>2</sub>和DS<sub>3</sub>的叶面积系数分别比WW减少77.1%、60.1%、39.2%和17.1%;栽后90 d,叶片光合速率分别比WW降低56.7%、26.6%、18.7%和9.5%.干旱胁迫降低了甘薯垄间的日蒸发量、蒸腾速率、耗水量和日耗水量,降低了土壤水利用效率而提高了灌溉水利用效率.干旱胁迫通过降低叶面积系数和光合速率,减少了生物产量及其向块根的分配,进而导致薯干产量显著降低.干旱胁迫时间越早、持续时间越长,对叶面积系数和光合速率,以及生物产量和收获指数的不利影响越大、导致减产幅度越大,水分利用效率越低.在有限的灌水条件下,甘薯生产中应尽可能减少前期干旱.
[6]
汪宝卿, 姜瑶, 解备涛, 等. 2个不同耐旱性甘薯品种的苗期根系蛋白组差异分析[J]. 核农学报, 2017, 31(2):232-240.
为从蛋白水平明确不同耐旱性甘薯品种苗期根系对干旱的应答机制,促进甘薯耐旱相关基因发掘,以耐旱性强的济薯21(JS)和耐旱性弱的济紫薯1(JZ)为材料,采用PEG-6000模拟田间梯度干旱胁迫过程,进行苗期根系蛋白的双向电泳和质谱分析。结果表明,基于60个不同耐旱性甘薯苗期根系的差异蛋白点分析,共鉴定出32个蛋白,其中有明确生理功能的有12个。在JZ中,下调表达的有3个肌动蛋白,上调表达的有2个60S核糖体蛋白,受体类蛋白激酶和真核翻译起始因子各1个;在JS中,下调表达的有1个类甜蛋白,上调表达的有2个过氧化物酶蛋白、1个磷酸果糖激酶家族蛋白和1个赤霉素调控蛋白。基因本体(GO)分析发现,干旱对甘薯苗期根系细胞质中糖和能量代谢过程影响较大,耐旱性强的品种苗期根系在抗氧化防御、能量代谢和信号转导方面占据优势。综上,不同耐旱性甘薯苗期根系在蛋白组学水平上响应干旱的生理调控途径存在明显差异,本研究结果为甘薯耐旱性品种选育提供了理论依据。
[7]
汪宝卿, 解备涛, 张海燕, 等. 基于iTRAQ技术的不同耐旱性甘薯苗期根系差异蛋白分析[J]. 核农学报, 2017, 31(10):1904-1912.
为从蛋白水平揭示不同甘薯品种的苗期耐旱性差异,明确甘薯耐旱性生理机制,以耐旱性强的济薯21(JS)和耐旱性弱的济紫薯1(JH)为材料,采用PEG-6000模拟田间梯度干旱胁迫过程,采用iTRAQ技术开展甘薯苗期根系全蛋白组差异蛋白分析。结果表明,在4个比较组中,共筛选到567个差异表达蛋白,其中上调表达蛋白302个,覆盖率达20%以上的蛋白占鉴定总蛋白数的58.6%。GO分析发现,JS苗期根系差异蛋白主要集中在胁迫响应、非生物刺激响应等生物过程,而JH苗期根系差异蛋白主要集中在糖基复合物代谢和辅酶代谢等生物过程,干旱均主要影响2个品种的细胞质、细胞溶质等细胞组分,2个品种的差异蛋白分子功能均涉及催化活性、氧化还原酶活性等方面。KEGG分析发现,正常条件下,耐旱性强的较耐旱性弱的甘薯品种苗期根系中的过氧化物酶(POD)和肉桂醇脱氢酶(CAD)表达上调;在干旱条件下,次生代谢合成过程中的苯丙烷合成通路中上调表达的差异蛋白最多,耐旱性强的JS苗期根系中主要是胁迫响应相关蛋白,而耐旱性弱的JH苗期根系中主要是能量代谢相关蛋白。总之,干旱对甘薯苗期根系细胞质中次生物质合成和能量代谢影响较大,耐旱性强的甘薯苗期根系氧化还原酶类蛋白表达上调,不同耐旱性甘薯苗期根系在蛋白组学水平上响应干旱的生理调控途径存在明显差异。本研究为甘薯耐旱性品种生理鉴定和耐旱基因发掘提供了线索。
[8]
汪宝卿, 张海燕, 解备涛, 等. 不同耐旱性甘薯柴根和块根的差异蛋白组分析[J]. 核农学报, 2019, 33(11):2133-2146.
为从蛋白水平揭示不同耐旱性甘薯柴根和块根的差异,明确甘薯根系分化和耐旱性生理机制,以耐旱性强的济薯21(JS21)和耐旱性弱的济紫薯1(JZS1)为试验材料,在旱棚内人工控水模拟田间干旱,采用iTRAQ技术开展不同耐旱性甘薯柴根和块根的全蛋白组差异蛋白分析。结果表明,共鉴定到甘薯根系差异蛋白2 003个,其中可信蛋白1 716个、动态表达蛋白819个。GO分析表明,干旱胁迫条件下,与柴根相比,JS21和JZS1块根差异蛋白分别集中于细胞质内碳水化合物合成、能量代谢等生物过程;与JZS1块根相比,JS21块根差异蛋白分子功能主要涉及过氧化物酶活性、氧化还原酶活性等。KEGG分析表明,木质素代谢在甘薯根系分化和响应干旱胁迫的过程中起到重要的调控作用。从淀粉和蔗糖代谢、苯丙烷代谢途径富集的差异蛋白分析中探明,正常条件下,JS21主要通过ADPGase积累淀粉,JZS1不仅通过ADPGase还通过UDPGase积累淀粉;干旱胁迫条件下,JS21块根中淀粉的合成仍大于分解,而JZS1块根中蔗糖的分解大于合成。正常条件下,2个品种柴根中均含有丰富的抗氧化酶;但干旱诱导JS21块根产生过氧化物酶,导致JZS1块根中木质素合成关键酶上调表达。蔗糖合酶是干旱胁迫条件下耐旱性弱的JZS1根系中能量代谢重要蛋白。综上,干旱胁迫条件下,耐旱性强的JS21可通过柴根中已有的和块根中诱导产生的过氧化物酶协同抵御干旱胁迫,而耐旱性弱的JZS1则通过蔗糖合酶维持能量代谢,其块根木质化程度加剧。本研究为甘薯耐旱性品种生理鉴定和耐旱基因发掘提供了一定的理论依据。
[9]
YANG J, MOEINZADEH M, KUHL H, et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history[J]. Nature plant, 2017, 3(9):693-703.
[10]
WU S, LAU K H, CAO Q H, et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement[J]. Nature communication, 2018, 9(1):4580.
[11]
TAO X, GU Y H, WANG H Y, et al. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweetpotato [Ipomoea batatas (L.) Lam.][J]. Plos one, 2012, 7(4):e36234.
[12]
WANG Z, FANG B, CHEN J, et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas)[J]. BMC genomics, 2010, 11(1):726-739.
[13]
MA P Y, BIAN X F, JIA Z D, et al. De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweetpotato (Ipomoea batatas L.)[J]. Gene, 2016, 575(2):641-649.
[14]
PONNIAH S K, THIMMAPURAM J, BHIDE K, et al. Comparative analysis of the root transcriptomes of cultivated sweetpotato (Ipomoea batatas [L.] Lam) and its wild ancestor (Ipomoea trifida [Kunth] G. Don)[J]. BMC plant biology, 2017, 17 (1):9-22.
[15]
QIN Z, LI A, HOU F, et al. Gene identification using RNA-seq in two sweetpotato genotypes and the use of mining to analyze carotenoid biosynthesis[J]. South African journal of botany, 2017, 109(3):189-195.
[16]
ZHU H, ZHOU Y Y, ZHAI H, et al. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato[J]. Journal of integrative agriculture, 2019, 18(1):9-23.
[17]
WANG Z Y, FANG B P, CHEN X L, et al. Temporal patterns of gene expression associated with tuberous root formation and development in sweetpotao (Ipomoea batatas)[J]. BMC plant biology, 2015, 15(7):180-192.
[18]
袁振, 汪宝卿, 姜瑶, 等. 甘薯耐旱性品种的苗期筛选及耐旱性指标研究[J]. 山东农业科学, 2015, 47(3):22-26,36.
[19]
LI R J, ZHAI H, KANG C, et al. De novo transcriptome sequencing of the orange-fleshed sweetpotato and analysis of differentially expressed genesrelated to carotenoid biosynthesis[J]. International journal of genomics, 2015, 2015(13):1-10.
[20]
WANG N, GUO T L, WANG P, et al. MhYTP1 and MhYTP2 from apple confer tolerance to multiple abiotic stresses in Arabidopsis thaliana[J]. Frontiers in plant science, 2017, 8(1367):1-9.
[21]
CHEN Q C, HU T, LI X H, et al. Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought[J]. Nature plants, 2022, 8(1):68-77.
[22]
CUI X Y, GAO Y, HAO L J, et al. BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1[J]. Plant physiology, 2019, 180(1):605-620.
[23]
LIU J, LIU J, DENG L B, et al. An intrinsically disordered region-containing protein mitigates the drought-growth trade-off to boost yields[J]. Plant physiology, 2023, 192(1):274-292.
[24]
FÀBREGAS N, LOZANO-ELENA F, BLASCO-ESCÁMEZ D, et al. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth[J]. Nature communications, 2018, 9(1):4680.
Drought represents a major threat to food security. Mechanistic data describing plant responses to drought have been studied extensively and genes conferring drought resistance have been introduced into crop plants. However, plants with enhanced drought resistance usually display lower growth, highlighting the need for strategies to uncouple drought resistance from growth. Here, we show that overexpression of BRL3, a vascular-enriched member of the brassinosteroid receptor family, can confer drought stress tolerance in Arabidopsis. Whereas loss-of-function mutations in the ubiquitously expressed BRI1 receptor leads to drought resistance at the expense of growth, overexpression of BRL3 receptor confers drought tolerance without penalizing overall growth. Systematic analyses reveal that upon drought stress, increased BRL3 triggers the accumulation of osmoprotectant metabolites including proline and sugars. Transcriptomic analysis suggests that this results from differential expression of genes in the vascular tissues. Altogether, this data suggests that manipulating BRL3 expression could be used to engineer drought tolerant crops.
[25]
MEGA R, ABE F, KIM J S, et al. Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors[J]. Nature plants, 2019, 5(2):153-159.
Water availability is a key determinant of terrestrial plant productivity. Many climate models predict that water stress will increasingly challenge agricultural yields and exacerbate projected food deficits. To ensure food security and increase agricultural efficiency, crop water productivity must be increased. Research over past decades has established that the phytohormone abscisic acid (ABA) is a central regulator of water use and directly regulates stomatal opening and transpiration. In this study, we investigated whether the water productivity of wheat could be improved by increasing its ABA sensitivity. We show that overexpression of a wheat ABA receptor increases wheat ABA sensitivity, which significantly lowers a plant's lifetime water consumption. Physiological analyses demonstrated that this water-saving trait is a consequence of reduced transpiration and a concomitant increase in photosynthetic activity, which together boost grain production per litre of water and protect productivity during water deficit. Our findings provide a general strategy for increasing water productivity that should be applicable to other crops because of the high conservation of the ABA signalling pathway.
[26]
GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488):266-269.
Drought alone causes more annual loss in crop yield than all pathogens combined. To adapt to moisture gradients in soil, plants alter their physiology, modify root growth and architecture, and close stomata on their aboveground segments. These tissue-specific responses modify the flux of cellular signals, resulting in early flowering or stunted growth and, often, reduced yield. Physiological and molecular analyses of the model plant have identified phytohormone signaling as key for regulating the response to drought or water insufficiency. Here we discuss how engineering hormone signaling in specific cells and cellular domains can facilitate improved plant responses to drought. We explore current knowledge and future questions central to the quest to produce high-yield, drought-resistant crops.Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
[27]
KOU M, ZHANG Y G, LI Q, et al. Comparative transcriptome analysis of sweetpotato (Ipomoea batatas L.) and discovery of genes involved in starch biosynthesis[J]. Plant biotechnology reports, 2021, 14(6):713-723.
[28]
SALEHIN M, LI B H, TANG M. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels[J]. Nature communications, 2019, 10(1):4021.
[29]
ZHANG F, TAO W, SUN R, et al. PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana[J]. Plos genet., 2020, 16(2):e1008044.
[30]
OROSA-PUENTE B, LEFTLEY N, WANGENHEIM D V, et al. Root branching toward water involves posttranslational modification of transcription factor ARF7[J]. Science, 2018, 362(6421):1407-1410.
PDF(1543 KB)

Accesses

Citation

Detail

Sections
Recommended

/