Effects of AM Fungi on Carotenoids and Flavonoids in Mulberry Trees

DUNianzhi

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (11) : 90-99.

PDF(2307 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2307 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (11) : 90-99. DOI: 10.11924/j.issn.1000-6850.casb2024-0459

Effects of AM Fungi on Carotenoids and Flavonoids in Mulberry Trees

Author information +
History +

Abstract

This study explores the effects of inoculating three types of arbuscular mycorrhizal (AM) fungi on the growth and development, and active compound production of mulberry trees in non-sterilized soil. Using the 'TeYou No. 2' mulberry variety as material and natural soil as the substrate, we conducted a pot experiment with four treatments: a control group (CK), and inoculations with Claroideoglomus etunicatum (CE), Funneliformis mosseae (FM), and Rhizophagus intraradices (RI). After 120 days, data on mulberry biomass, leaf carotenoids, and flavonoids were collected. The results revealed that, compared to the control group, root fresh weights increased by 57.57%, 81.92%, and 90.03% for CE, FM, and RI inoculations, respectively, while root dry weights rose by 24.10%, 47.65%, and 72.58%. The net photosynthetic rates for CE, FM, and RI increased by 20.73%, 4.22%, and 25.41%, respectively, and carotenoid content grew by 28.57%, 28.57%, and 35.71%. The average flavonoid content in leaves for CE, FM, and RI was 4.23 mg/g, 3.31 mg/g, and 3.85 mg/g, all exceeding the control group’s 2.55 mg/g. Inoculation with AM fungi in non-sterilized soil positively impacted mulberry growth, enhanced root development, increased active compound accumulation in leaves, and fostered a beneficial symbiotic relationship with the mulberry trees.

Key words

arbuscular mycorrhizal fungi / mulberry / root / non-sterilized / growth and development / flavonoid / symbiotic relationship / carotenoid

Cite this article

Download Citations
DU Nianzhi. Effects of AM Fungi on Carotenoids and Flavonoids in Mulberry Trees[J]. Chinese Agricultural Science Bulletin. 2025, 41(11): 90-99 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0459

References

[1]
SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales[J]. Annual review of plant biology, 2011, 62(1):227-250.
[2]
HEIJDEN V D, KLIRONOMOS J N, URSIC M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J]. Nature, 1998, 396(6706):69-72.
[3]
JEFFRIES P, GIANINAZZI S, PEROTTO S, et al. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility[J]. Biology and fertility of soils, 2003, 37(1):1-16.
[4]
舒玉芳, 叶娇, 潘程远, 等. 三峡库区桑树菌根发育特征及菌根对桑苗生长的促进作用[J]. 蚕业科学, 2011, 37(6):978-984.
[5]
邢丹, 韩世玉, 罗朝斌, 等. 接种丛枝菌根真菌对干旱条件下桑树生长及水分利用效率的影响[J]. 蚕业科学, 2019, 45(4):475-483.
[6]
施松梅, 陈珂, 涂波, 等. 石漠化地区桑根际AM真菌多样性及桑壮苗培育研究[J]. 西南大学学报(自然科学版), 2013, 35(10):24-30.
[7]
WANG Y, XING D, LUO C B, et al. Arbuscular mycorrhizal fungal species identity governs plant water content and soil aggregation improvements under wet-dry climate conditions[J]. Environmental science and pollution research, 2020, 27(2):37377-37383.
[8]
叶娇, 涂波, 施松梅, 等. 桑菌根初生结构对梯度水分胁迫的细胞学生态响应[J]. 西南大学学报(自然科学版), 2012, 34(8):67-72.
[9]
KASHYAP S, SHARMA S. In vitro selection of salt tolerant Morus alba and its field performance with bioinoculants[J]. Horticultural science, 2006, 33(2): 77-86.
[10]
WANG Y, ZHANG N L, WANG M Q, et al. Sex-specific differences in the physiological and biochemical performance of arbuscular mycorrhizal fungi-inoculated mulberry clones under salinity stress[J]. Frontiers in plant science, 2021,12:614162.
[11]
ZENG P, HUANG F, GUO Z, et al. Physiological responses of Morus alba L. in heavy metal(loid) -contaminated soil and its associated improvement of the microbial diversity[J]. Environmental science and pollution research, 2020, 27(4):4294-4308.
[12]
刘家艳. 消落帯菌根桑发育生理特征及抗镉污染机理研究[D]. 重庆: 西南大学, 2015.
[13]
樊宇红, 凌宏文, 朴河春. 桑树(Morus alba)与丛枝菌根的共生对重金属元素吸收的影响[J]. 生态环境学报, 2014, 23(3):477-484.
[14]
刘代军, 涂波, 施松梅, 等. 石漠化地区的生态危机及菌根桑生物修复潜力研究进展[J]. 中国岩溶, 2012, 31(2):185-190.
[15]
黄小辉, 陈道静, 冯大兰. 不同基质条件下丛枝菌根真菌对桑树生长的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(3):9-16.
【目的】研究不同基质条件下桑树接种丛枝菌根(AM)真菌后的生长情况,以筛选适合桑树育苗的基质和AM真菌种类,为桑树的生态和经济产业发展提供技术支撑。【方法】采用G<sub>a</sub>(聚丛球囊霉Glomus aggregatum)、G<sub>c</sub>(苏格兰球囊霉Glomus caledonium)、G<sub>i</sub>(根内球囊霉 Glomus intraradices)、G<sub>v</sub>(地表球囊霉 Glomus versiforme)、BGCH(透光球囊霉Glomus diaphanum BGC HEB07A)、BGCX(幼套球囊霉Glomus etunicatum BGC XJ03C)6种丛枝菌根真菌(arbuscular mycorrhiza,AM真菌),设置P1(牛粪、菇渣、珍珠岩、黄心土体积比6.0:3.0:0.5:0.5)、P2(牛粪、菇渣、珍珠岩、黄心土体积比6:2:1:1)、P3(黄心土)3种基质配比,研究不同基质条件下接种AM真菌对桑树生长情况的影响。【结果】G<sub>c</sub>、BGCX和BGCH 3种AM真菌对桑树根系的侵染率最高,且基质P1中的侵染率显著高于P2和P3; 接种G<sub>c</sub>和BGCH桑树种子的发芽率最高,且在基质P1中表现更好; 接种AM真菌桑树的株高、地径、根系表面积、根系总长度、根尖数量和根系生物量均显著高于未接种的桑树,以G<sub>c</sub>、G<sub>v</sub>和BGCH 3种效果最好,且在基质P1中表现更好; 接种AM真菌桑树的净光合速率、水分利用效率、PSⅡ(光系统Ⅱ)最大光化学效率、PSⅡ天线转化效率、实际原初光化学效率、光合电子传递速率等参数值均显著高于未接菌种的桑树,总体上以G<sub>c</sub>、G<sub>v</sub>和BGCH 3种效果最好,且在基质P1中表现更好。【结论】AM真菌促进了桑树的生长,以G<sub>c</sub>和BGCH 两种最优,且以基质P1最佳。
[16]
CHEN K, SHI S M, YANG X H, et al. Contribution of arbuscular mycorrhizal inoculation to the growth and photosynthesis of mulberry in karst rocky desertification area[J]. Applied mechanics and materials, 2014, 8(1):769-773.
[17]
郑亚茹, 唐明. 丛枝菌根真菌对盐胁迫下桑树生长及光合特性的影响[J]. 蚕业科学, 2020, 46(6):669-677.
[18]
LU N, ZHOU X, CUI M, et al. Colonization with arbuscular mycorrhizal fungi promotes the growth of Morus alba L. seedlings under greenhouse conditions[J]. Forests, 2015, 6(3):734-747.
[19]
PIAO H C, LI S L, WANG S J. Nutrient uptake by mulberry and Chinese prickly ash associated with arbuscular mycorrhizal fungi[J]. Acta geochimica, 2016, 35(2):120-129.
[20]
KUMARESAN S, ELUMALAI S, PRABHAKARAN M. Effect of VAM fungi on growth and physiological parameters of mulberry (Morus alba L.) cultivars in South India[J]. Biosciences biotechnology research Asia, 2010, 7(2):793-806.
[21]
BAQUAL M F, DAS P K. Influence of biofertilizers on macronutrient uptake by the mulberry plant and its impact on silkworm bioassay[J]. Caspian journal of environmental sciences, 2006, 4(2):98-109.
[22]
KATIYAR R S, DAS P K, CHOUDHURY P C, et al. Response of irrigated mulberry (Morus alba L.) to VA-mycorrhizal inoculation under graded doses of phosphorus[J]. Plant and soil, 1995, 170(2):331-337.
[23]
MAMATHA G, BAGYARAJ D J, JAGANATH S. Inoculation of field-established mulberry and papaya with arbuscular mycorrhizal fungi and a mycorrhiza helper bacterium[J]. Mycorrhiza, 2002, 12(6):313-316.
The effects of soil inoculation with arbuscular mycorrhizal (AM) fungi and a mycorrhiza helper bacterium (MHB) were investigated on mulberry and papaya plants already established in the field. Ten-year-old mulberry plants (var. M5) were inoculated with Glomus fasciculatum and 1.5-year-old papaya plants (var. Solo) were inoculated with a mixed culture of G. mosseae and G. caledonium with or without Bacillus coagulans at two levels of P fertilizer. Growth, P uptake, yield and AM colonization levels were monitored. Leaf yield in mulberry and fruit yield in papaya were minimal in uninoculated plants given 50% recommended P. However, crop yields of both mulberry and papaya inoculated with AM fungi alone or together with the bacterium and given 50% recommended P were statistically on a par with that of uninoculated plants given 100% recommended P. As inoculation of B. coagulans increased mycorrhiza levels in AM fungal-inoculated plants, this may be included in the class of MHB. Thus, mulberry and papaya already established in the field may respond to AM inoculation and MHB may increase symbiosis development by efficient AM fungi.
[24]
RAM RAO D M, KODANDARAMAIAH J, REDDY M P, et al. Effect of VAM fungi and bacterial biofertilizers on mulberry leaf quality and silkworm cocoon characters under semiarid conditions[J]. Caspian journal of environmental sciences, 2007, 5(2):111-117.
[25]
KASHYAP S, SHARMA S, VASUDEVAN P. Role of bioinoculants in development of salt-resistant saplings of Morus alba (var. sujanpuri) in vivo[J]. Scientia horticulturae, 2004, 99(4):291-307.
[26]
PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the british mycological society, 1970, 55(1):18-19.
[27]
MCGONIGLE T P, MILLER M H, EVANS D G, et al. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi[J]. New phytologist, 2010, 115(3): 495-501.
[28]
WELLBURN A R, LICHTENTHALER H K. Formulae and program to determine total carotenoids and chlorophylls A and B of leaf extracts in different solvents[J]. Springer netherlands, 1984,1:9-12.
[29]
王珂. 桑叶黄酮提取纯化及其降血脂作用研究[D]. 上海: 华东师范大学, 2011.
[30]
BAGYARAJ D J, SREERAMULU K R. Preinoculation with VA mycorrhiza improves growth and yield of chilli transplanted in the field and saves phosphatic fertilizer[J]. Plant and soil, 1982, 69(3):375-381.
[31]
盖京苹, 冯固, 李晓林. 丛枝菌根真菌在田间的分布特征、代谢活性及其对甘薯生长的影响[J]. 应用生态学报, 2005, 16(1):147-150.
研究了大田条件下丛枝菌根(AM)真菌的分布特征、代谢活性及其对甘薯的生长效应.结果表明,接种Glomus intraradices 8周后,甘薯地上部干重,薯块鲜重和薯块个数均明显高于不接种对照;植株地上部和根系的吸磷量显著提高.与不接种对照相比,接种处理的甘薯菌根侵染率、甘薯根外菌丝密度以及甘薯根内菌丝的活性(根内菌丝碱性磷酸酶活性)显著提高.进一步分析甘薯根际不同方位上的菌丝分布,发现接种处理中平行于垄的方向的菌丝密度显著高于苗子下方的菌丝密度,而不接种处理的各个方向总菌丝密度无差异;活菌丝(具琥珀酸脱氢酶活性的菌丝)密度在各个方向的分布规律与总菌丝密度的分布规律一致.接种后根内菌丝活性的增强,根外活性菌丝密度的增加及其分布特征的改变,是甘薯产量增加的主要原因.
[32]
晏梅静, 补春兰, 黄盖群, 等. 丛枝菌根真菌对桑树(Morus alba)地上部分的促进作用[J]. 植物生理学报, 2020, 56(12):2647-2654.
[33]
POWELL C L, GROTERS M, METCALFE D. Mycorrhizal inoculation of a barley crop in the field[J]. New Zealand journal of agricultural research, 1980, 23(1):107-109.
[34]
龙宣杞, 王继辉, 陈金梅, 等. 丛枝菌根菌剂对大田棉花抗病性及产量的影响[J]. 新疆农业科学, 2007, 44(4):457-460.
[35]
申仕康, 王杨, 王跃华. 非灭菌条件下丛枝菌根对猪血木幼苗生长的影响[J]. 科技导报, 2009, 27(16):19-25.
[36]
MANJUNATH B A, BAGYARAJ D J. Components of VA Mycorrhizal inoculum and their effects on growth of onion[J]. New phytologist, 1981, 87(2):355-361.
[37]
余茂德, 楼程富主编. 桑树学[M]. 北京: 高等教育出版社, 2016.
[38]
SHI S M, CHEN K, GAO Y, et al. Arbuscular mycorrhizal fungus species dependency governs better plant physiological characteristics and leaf quality of mulberry (Morus alba L.) seedlings[J]. Front microbiol, 2016,7:1030.
[39]
BASLAM M, PASCUAL I, SÁNCHEZ-DÍAZ M, et al. Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition[J]. Journal of agricultural and food chemistry, 2011, 59(20):11129-11140.
The improvement of the nutritional quality of lettuce by its association with arbuscular mycorrhizal fungi (AMF) has been recently reported in a previous study. The aim of this research was to evaluate if the fertilization with three P sources differing in water solubility affects the effectiveness of AMF for improving lettuce growth and nutritional quality. The application of either water-soluble P sources (Hewitt's solution and single superphosphate) or the water-insoluble (WI) fraction of a "rhizosphere-controlled fertilizer" did not exert negative effects on the establishment of the mycorrhizal symbiosis. AMF improved lettuce growth and nutritional quality. Nevertheless, the effect was dependent on the source of P and cultivar. Batavia Rubia Munguía (green cultivar) benefited more than Maravilla de Verano (red cultivar) in terms of mineral nutrients, total soluble sugars, and ascorbate contents. The association of lettuce with AMF resulted in greater quantities of anthocyanins in plants fertilized with WI, carotenoids when plants received either Hewitt's solution or WI, and phenolics regardless of the P fertilizer applied.
[40]
SICHER R C, BUNCE J A. Adjustments of net photosynthesis in Solanum tuberosum in response to reciprocal changes in ambient and elevated growth CO2 partial pressures[J]. Physiologia plantarum, 2010, 112(1):55-61.
[41]
王玉丽, 孙居文, 荀守华, 等. 干旱胁迫对东岳红光合特性、叶绿素荧光参数及叶片相对含水量的影响[J]. 山东农业科学, 2017, 49(4):46-50.
[42]
杨海霞, 朱祥瑞, 陆洪省. 桑叶保健制品开发利用研究进展[J]. 科技通报, 2003, 19(1):72-76.
PDF(2307 KB)

Accesses

Citation

Detail

Sections
Recommended

/