Effects of Different Exogenous Silicon Fertilizers Application on Yield, Dry Matter and Nutrient Accumulation and Transport of Rice in Tidal Flat

CHENPengjun, ZHANGJiao, HANJijun, MIAOYuanqing, CUIShiyou

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (9) : 8-17.

PDF(1257 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1257 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (9) : 8-17. DOI: 10.11924/j.issn.1000-6850.casb2024-0619

Effects of Different Exogenous Silicon Fertilizers Application on Yield, Dry Matter and Nutrient Accumulation and Transport of Rice in Tidal Flat

Author information +
History +

Abstract

A field experiment was carried out from June to November 2021 in tidal flat of Nantong, Jiangsu Province to study the effects of different exogenous silicon fertilizers spraying on rice yield, dry matter and nutrient accumulation and transport in various organs and rice quality, with ‘Nanjing 5055’ as the test variety. Five treatments were set up in the experiment, including spraying water treatment (CK), sugar alcohol silicon treatment (SF1), seaweed liquid silicon treatment (SF2), liquid silica-zinc fertilizer treatment (SF3) and highly active ionic liquid silicon treatment (SF4). The results showed that (1) compared with CK, rice yield under SF1, SF2, SF3 and SF4 increased by 9.24%, 7.31%, 0.28% and 3.64%, respectively, and reached a significant level under SF1. At the same time, the number of grains per panicle, the number of solid grains, the weight of thousand grains, the length of panicle and the density of grains were increased significantly under SF1 (P<0.05). (2) The above ground dry matter accumulation of rice at maturity was SF1>SF2>SF4>SF3>CK. At heading stage, nitrogen accumulation in the above-ground part and potassium accumulation in the upper part of the ground under SF1 and SF3 were significantly increased under each spraying treatment. Nitrogen accumulation in the lower panicle and above-ground parts of SF1, SF3 and SF4 at maturity was significantly increased (P<0.05). The distribution of nitrogen and potassium accumulation in each organ of rice at heading stage was in the order of stem sheath>leaf>ear. The distribution of nitrogen accumulation at maturity was in the order of spike>sheath>leaf, and the distribution of potassium accumulation was in the order of sheath>ear>leaf. (3) Compared with CK, leaf dry matter transfer (SF3) and ear dry matter increase (SF1, SF2 and SF3) were significantly increased. Nitrogen transfer in stem sheath (SF2, SF3 and SF4) and leaves (SF1) and nitrogen increase in panicle (SF1, SF3 and SF4) were significantly increased. The transfer volume of potassium in stem sheath (SF3) and leaf (SF1) and the increase of potassium in panicle (SF3) were significantly increased (P<0.05). (4) Rice yield was positively correlated with spike dry matter increase and nitrogen transfer, significantly positively correlated with dry matter accumulation and spike nitrogen accumulation at maturity, and significantly negatively correlated with leaf potassium accumulation. (5) Different exogenous silicon fertilizers spraying had no significant effects on the appearance and processing quality of shoal rice under the experimental conditions. Therefore, spraying appropriate exogenous silicon fertilizer (especially sugar alcohol silicon) on the leaf surface could significantly increase rice yield in this coastal mudflat area. Spraying exogenous silicon fertilizer mainly improves the number of grains per spike and the quality of 1000 grains, increasing the accumulation of dry matter and nitrogen in the rice spike.

Key words

foliar silicon fertilizer / tidal flat rice / saline-alkali land utilization / nitrogen accumulation / potassium accumulation

Cite this article

Download Citations
CHEN Pengjun , ZHANG Jiao , HAN Jijun , et al . Effects of Different Exogenous Silicon Fertilizers Application on Yield, Dry Matter and Nutrient Accumulation and Transport of Rice in Tidal Flat[J]. Chinese Agricultural Science Bulletin. 2025, 41(9): 8-17 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0619

References

[1]
张梅, 王宇, 赵兰坡, 等. 苏打盐碱土种稻改良的水资源高效利用田间试验研究[J]. 灌溉排水学报, 2014, 33(1):132-134.
[2]
王相平, 杨劲松, 姚荣江, 等. 苏北滩涂水稻微咸水灌溉模式及土壤盐分动态变化[J]. 农业工程学报, 2014, 30(7):54-63.
[3]
严凯, 蒋玉兰, 唐纪元, 等. 盐碱地条件下施氮量和栽插密度对水稻产量和品质的影响[J]. 中国土壤与肥料, 2018(2):67-74.
[4]
张蛟, 崔士友, 胡帅栋, 等. 水稻种植对沿海滩涂土壤有机碳及碳库管理指数的影响[J]. 中国土壤与肥料, 2020(3):107-112.
[5]
张蛟, 崔士友, 陈澎军, 等. 沿海滩涂水稻种植对土壤微生物量碳和水溶性有机碳的影响[J]. 江苏农业科学, 2022, 50(17):222-228.
[6]
KANAWAPEE N, SANITCHON J, SRIHABAN P, et al. Physiological changes during development of rice (Oryza sativa L.) varieties differing in salt tolerance under saline field condition[J]. Plant and soil, 2013, 370(1/2):89-101.
[7]
ABBAS G, SAQIB M, AKHTAR J, et al. Physiological and biochemical characterization of Acacia stenophylla and Acacia albida exposed to salinity under hydroponic conditions[J]. Canadian journal of forest research, 2017, 47(9):1293-1301.
[8]
韦还和, 葛佳琳, 张徐彬, 等. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8):1238-1247.
旨在明确盐胁迫下水稻分蘖发生与成穗规律及其优势叶位, 为沿海滩涂水稻高产栽培的分蘖合理利用与调控提供依据。以江苏沿海滩涂大面积种植的常规粳稻南粳9108为试材, 设置对照(盐浓度0)、中盐(盐浓度0.15%)和高盐(盐浓度0.3%)环境, 比较研究盐逆境下水稻分蘖发生与成穗特性及其对群体产量的贡献。结果表明, 对照、中盐和高盐处理的两年平均产量(t hm<sup>-2</sup>)分别为9.7、7.4和4.2; 中盐和高盐处理的穗数、每穗粒数、结实率和千粒重均显著低于对照。与对照相比, 中盐和高盐处理下拔节、抽穗和成熟期群体茎蘖数和成穗率均较低。对照的分蘖利用以一次分蘖和二次分蘖为主, 一次分蘖发生在第3至第7叶位, 第4至第6叶位是分蘖发生与成穗的优势叶位, 二次分蘖则以1/4和1/5蘖位优势较强; 盐胁迫的分蘖利用以一次分蘖为主, 第4至第6叶位是分蘖发生与成穗的优势叶位。盐胁迫下各蘖位的穗长、每穗粒数、着粒密度、一次枝粳数及粒数、二次枝粳数及粒数均低于对照。与对照相比, 盐胁迫下水稻单株成穗数少、个体和群体生长协调性差、穗型小, 最终单株和群体产量低。
[9]
SHRIVASTAVA P, KUMAR R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi journal of biological sciences, 2015, 22(2):123-131.
Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction - somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.
[10]
NUMAN M, BASHIR S, KHAN Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review[J]. Microbiological research, 2018, 209:21-32.
Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants.Copyright © 2018 Elsevier GmbH. All rights reserved.
[11]
张蛟, 陈澎军, 韩继军, 等. 盐逆境下施用缓释肥及其减氮处理对水稻生长、穗部性状、产量及品质的影响[J]. 江苏农业学报, 2023, 39(7):1483-1491.
[12]
张蛟, 陈澎军, 崔士友, 等. 不同促生菌配合生长调节剂处理对滩涂稻田盐分变化、水稻产量及品质的影响[J]. 核农学报, 2024, 38(1):160-168.
为了探明促生菌和生长调节剂对滩涂稻田盐分变化、水稻产量及稻米品质的影响,于2020年6—11月,在江苏南通沿海滩涂地区布置水稻种植试验,采用双因素裂区设计,主区为促生菌浸种处理,包括清水(CK)、如东促生菌(RD)和宁波促生菌(NB)浸种,副区为生长调节剂喷施处理,包括喷施清水(W)、碧护(0.136%赤·吲乙·芸苔)(T1)和复硝酚钠(T2)。结果表明,种稻过程中灌溉水盐度变化幅度为0.78~1.12 g·kg<sup>-1</sup>,CK、RD和NB处理水稻生长期间土壤盐分变化幅度为1.11~1.87 g·kg<sup>-1</sup>。水稻产量在RD和NB下较CK分别增加了4.65%和1.83%;在T1和T2下较W分别增加了5.50%和1.05%;RD-T1下水稻产量较CK-W增加效果最好,达到11.66%(P&lt;0.05),且每穗粒数和实粒数分别增加了13.45%和13.85%(P&lt;0.05)。与CK相比,RD稻米糙米率、直链淀粉和蛋白质含量均显著降低,其他品质指标无显著差异。双因素分析结果表明,生长调节剂对穗长、每穗粒数、实粒数和产量均具有显著影响,促生菌对水稻千粒重具有显著影响,生长调节剂和促生菌仅对水稻千粒重具有显著互作效应。可见,促生菌结合生长调节剂处理对滩涂水稻增产具有明显效果,且生长调节剂主要提高了每穗粒数和实粒数,促生菌主要改善了滩涂水稻千粒重。本研究结果为探索适宜的农艺管理措施以达到滩涂水稻增产目的提供了技术参考。
[13]
张蛟, 韩继军, 崔士友, 等. 不同外源物质及喷施时期对滩涂水稻穗部性状、产量及品质的影响[J]. 中国稻米, 2024, 30(2):31-36.
以南粳5055为供试品种,于2021年在江苏滩涂地区(土壤盐分1.11~1.26 g/kg)开展田间试验,研究不同外源物质及喷施时期(2次:分蘖期、孕穗期和3次:分蘖期、孕穗期、灌浆期)对滩涂水稻穗部性状及产量、品质的影响。试验设置7个处理,即喷施清水(CK)、禾稼春喷施2次(L1-2)、碧护喷施2次(L2-2)、萘乙酸喷施2次(L3-2)、禾稼春喷施3次(L1-3)、碧护喷施3次(L2-3)和萘乙酸喷施3次(L3-3)。结果表明,喷施外源物质具有提高水稻产量的效果,与CK相比,L2-2、L2-3、L3-2和L3-3分别显著提高产量17.69%、17.80%、11.62%和13.42%,L1-2和L1-3则分别提高产量6.66%和7.09%,但差异不显著;喷施外源物质对稻米品质影响不大。喷施外源物质对水稻有效穗数和结实率均没有明显影响,但显著增加实粒数;L1-2、L2-2、L1-3和L3-3处理显著增加每穗粒数,L2-2和L2-3处理显著增加千粒重。喷施外源物质对水稻一次枝梗的枝梗数、总粒数、实粒数和结实率没有显著影响,而对二次枝梗的枝梗数、总粒数、实粒数及结实率均有不同程度的增加效果,且二次枝梗对每穗粒数的贡献率普遍提高。对同一种外源物质而言,喷施2次和喷施3次对水稻产量、穗部性状的影响没有显著差异。碧护喷施处理提高水稻产量主要是由每穗粒数、每穗实粒数和千粒重提高引起的,萘乙酸喷施处理提高水稻产量主要是每穗粒数、每穗实粒数提高引起的,而每穗粒数的提高主要与二次枝梗数及二次枝梗的总粒数和实粒数增加有关。因此,今后在滩涂地区种植水稻,可通过在分蘖期和孕穗期喷施外源叶面肥或植物生长调节剂来改善穗粒结构特别是二次枝梗性状,达到增产增收的目的。
[14]
MA J F, YAMAJI N. A cooperative system of silicon transport in plants[J]. Trends in plant science, 2015, 20(7):435-442.
The high accumulation of silicon (Si) protects plants from biotic and abiotic stresses. Two different types of Si transporter [Low Silicon 1 (Lsi1) and 2 (Lsi2)] involved in the uptake and distribution of Si have been identified. Lsi1, a Si permeable channel, belongs to the Nod26-like major intrinsic protein (NIP) III subgroup of the aquaporin membrane protein family with a distinct selectivity, whereas Lsi2, an efflux Si transporter, belongs to an uncharacterized anion transporter family. These transporters are localized to the plasma membrane, but, in different plant species, show different expression patterns and tissue or cellular localizations that are associated with different levels of Si accumulation. A recent mathematical modeling study revealed that cooperation of Lsi1 and Lsi2, which show a polarized localization, is required for the efficient transport of Si in rice.Copyright © 2015 Elsevier Ltd. All rights reserved.
[15]
MA J F, TAMAI K, ICHII M, et al. A rice mutant defective in Si uptake[J]. Plant physiology (Bethesda), 2002, 130(4):2111-2117.
[16]
MA J F, TAMAI K, YAMAJI N, et al. A silicon transporter in rice[J]. Nature, 2006, 440(7084):688-691.
[17]
娄金华, 陈猛猛, 张士荣, 等. 磷硅肥配施对盐渍土壤水稻生长及养分吸收的影响[J], 水土保持学报, 2020, 34(4):263-269.
[18]
杨国英, 郭智, 盛婧, 等. 不同生育时期施用硅肥对优质食味粳稻产量和品质的影响[J]. 中国稻米, 2021, 27(1):68-74.
探究不同生育时期施用硅肥对优质食味粳稻产量和品质的影响,可为优质食味粳稻合理施硅提供理论基础和技术支撑。以优质食味粳稻品种南粳9108为试验材料,以不施肥(CK1)和常规施肥(CK2)为对照,在常规施肥的基础上分别设置硅肥浸种(T1)、硅肥浸种+苗期喷施硅肥15 kg/hm<sup>2</sup>(T2)、硅肥浸种+拔节期喷施硅肥15 kg/hm<sup>2</sup>(T3)、硅肥浸种+抽穗期喷施硅肥15 kg/hm<sup>2</sup>(T4)、硅肥浸种+苗期20%、拔节期30%、抽穗期50%喷施硅肥15 kg/hm<sup>2</sup>(T5)、硅肥浸种+苗期1/3、拔节期1/3、抽穗期1/3喷施硅肥45 kg/hm<sup>2</sup>(T6)处理,比较不同施硅方式对水稻产量和品质的影响。结果表明,T6处理产量最高,其次是T5、T4、T3处理,T1和T2处理产量较CK2增幅较小;不同硅肥处理单位面积穗数、每穗颖花数、千粒重和结实率较不施硅处理均有不同程度提高。施硅对产量构成因素的影响大小依次为每穗颖花数&#x0003E;单位面积穗数&#x0003E;千粒重&#x0003E;结实率,T3、T5和T6处理的单位面积穗数和每穗颖花数增幅较大。与CK2相比,T3、T4、T5和T6处理增加了水稻库容量、源强度及源库比,提高了糙米率、精米率和整精米率,同时降低了垩白粒率、垩白度及蛋白质含量。T6处理稻米的峰值黏度、热浆黏度、崩解值、最终黏度较CK2显著提高,而其他处理对稻米淀粉黏滞谱特性的影响不显著。主成分分析结果表明,不同硅肥处理对水稻产量和品质影响的大小依次为T6&#x0003E;T5&#x0003E;T4&#x0003E;T3&#x0003E;T2&#x0003E;T1。综合考虑硅肥投入、水稻产量及品质,在常规施肥加硅肥浸种基础上,优质食味粳稻推荐硅肥施用方式为:喷施量15 kg/hm<sup>2</sup>,苗期占20%、拔节期占30%、抽穗期占50%。
[19]
张阳, 赵瑞, 刘士广, 等. 叶面喷施硅肥对水稻农艺性状和抗性的影响[J]. 激光生物学报, 2021, 30(3):270-275.
[20]
丁俊杰, 刘凯, 姚亮亮, 等. 微生物菌剂及硅肥对盐碱地水稻生长发育及土壤环境的影响[J]. 中国稻米, 2022, 28(1):63-66.
针对黑龙江省西部地区盐碱地水稻种植过程中存在的有效分蘖少、有效穗数少、产量低、化肥对土壤二次污染等问题,于2019年在黑龙江省泰来县盐碱地水稻生产中进行添加微生物菌剂、纳米硅肥和传统施肥的对比试验,通过调查水稻产量性状、土壤理化性质及微生物含量,明确其增产效果及土壤改良效果。结果表明,添加微生物菌剂和纳米硅肥显著提高盐碱地水稻分蘖数、叶绿素值、叶面积、根长、千粒重、有效穗数、穗粒数及产量,同时改善了土壤的理化性质及微生物含量。试验结果为盐碱地水稻肥料的施用提供了一个新的思路,为盐碱地水稻高产奠定了一定的研究基础。
[21]
魏晓东, 宋雪梅, 赵凌, 等. 硅锌肥及其施用方式对南粳46产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3):295-306.
【目的】比较硅锌肥及其施用方式对南粳46稻米产量和品质的影响,为调优栽培提供参考依据。【方法】以优良食味粳稻品种南粳46为材料,倒4叶期土壤追施和孕穗期(抽穗前5~7 d)叶面喷施硅肥和锌肥,设置土壤追施硅肥(Si-B)、土壤追施锌肥(Zn-B)、土壤追施硅肥+叶面喷施硅肥(Si-B+Si-L)、土壤追施锌肥+叶面喷施锌肥(Zn-B+Zn-L)、土壤追施硅肥+土壤追施锌肥(Si-B+Zn-B)、叶面喷施硅肥(Si-L)、叶面喷施锌肥(Zn-L)、叶面喷施硅肥+叶面喷施锌肥(Si-L+Zn-L)8个处理,以不施硅锌肥(CK)为对照,调查分析不同处理对南粳46籽粒产量及其构成因素、加工品质、外观品质、食味品质和香味物质2-乙酰-1-吡咯啉(2-AP)含量的影响。【结果】施用硅锌肥对南粳46均有明显的增产作用,增幅为0.8%~11.9%,增产的原因主要是增加了每穗粒数和千粒重,而对穗数和结实率没有明显影响。施用硅肥使糙米率和精米率下降,施用锌肥则使糙米率和精米率增加,施用硅肥和锌肥都可使整精米率提高,施用锌肥提高整精米率的效果比施用硅肥更明显。硅锌肥对直链淀粉含量和RVA特征值的影响随处理不同而异,但施用硅锌肥可以提高崩解值,降低消减值,使胶稠度显著增加,食味值明显提高,稻米2-AP含量显著增加,香味明显变浓。【结论】倒4叶期土壤追施硅肥与孕穗期叶面喷施锌肥相结合,既可增加南粳46的产量,又能提高整精米率和食味品质,增加香味。
[22]
车喜庆, 郭莉, 邢亚楠, 等. 单硅酸对滨海稻区水稻产量及稻米品质的影响[J]. 北方水稻, 2023, 53(2):33-36.
[23]
林子鑫. 盐胁迫下硅对土壤理化性质及水稻叶片生理指标和产量的影响[D]. 哈尔滨: 东北农业大学, 2023.
[24]
韦海敏, 陶伟科, 周燕, 等. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5):1339-1349.
本研究旨在阐明硅素穗肥调控盐碱地水稻抽穗期矿质元素分配的作用机制。以常规粳稻淮稻5号为材料, 于2019年和2020年在江苏沿海大丰盐碱地(盐分3.4 g kg<sup>-1</sup>, pH 8.3)开展大田试验, 设置3个硅肥用量(0、60和100 kg hm<sup>-2</sup>), 于幼穗分化期随穗肥施入。结果表明: (1) 硅素穗肥促进抽穗期植株养分吸收, 提高成熟期干物质量和产量, 与Si0相比, Si60平均增产4.3%, Si100平均增产8.6%; (2) 硅素穗肥优化了水稻不同部位K<sup>+</sup>、Na<sup>+</sup>分配, 提高水稻叶片、上部叶鞘、中下部茎秆K<sup>+</sup>含量, 降低穗、上部叶片、叶鞘、茎秆Na<sup>+</sup>含量, 提高各部位的K<sup>+</sup>/Na<sup>+</sup>, 进而提高离子稳态; (3) 硅素穗肥促进叶片大量元素N、P、Ca、Mg和微量元素Fe、Mn的积累, 与Si0相比, 硅素穗肥显著提高了16.5%的P含量、18.5%的Mg含量、22.4%的Ca含量、19.8%的Fe含量, 缓解盐碱胁迫对水稻叶片的不利影响。综上所述, 硅素穗肥优化了盐碱胁迫下水稻矿质元素的吸收分配, 减轻幼嫩器官盐胁迫程度, 促进叶片多种有益元素积累, 促进水稻养分吸收, 且100 kg hm<sup>-2</sup>效果最佳。
[25]
梁胜贤, 刘春成, 胡超, 等. 叶面喷施硅肥对再生水灌溉水稻叶际细菌群落结构及功能基因的影响[J]. 环境科学, 2024, 45(1):555-566.
[26]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[27]
孙琪, 耿艳秋, 金峰, 等. 播期对直播水稻产量、花后各器官干物质和氮素积累及转运的影响[J]. 作物杂志, 2020(5):119-126.
[28]
霍中洋, 李杰, 张洪程, 等. 不同种植方式下水稻氮素吸收利用的特性[J]. 作物学报, 2012, 38(10):1908-1919.
以早熟晚粳、迟熟中粳和中熟中粳3种生育类型水稻品种(含常规粳稻和杂交粳稻)为材料,比较研究了旱育中苗壮秧精量手栽、小苗机插、直播3种种植方式下水稻的氮素吸收利用特性。结果表明,拔节期植株含氮率和吸氮量为直播&gt;机插&gt;手栽,抽穗期和成熟期为手栽&gt;机插&gt;直播,手栽成熟期总吸氮量较机插和直播分别高11.68%和39.03%,机插较直播高24.49%;氮素吸收速率,拔节前为直播&gt;机插&gt;手栽,拔节至抽穗期和抽穗至成熟期为手栽&gt;机插&gt;直播,手栽和机插拔节至抽穗期的吸收速率最大,直播中熟中粳拔节至抽穗期最大,早熟晚粳和迟熟中粳拔节前最大;拔节至抽穗期和抽穗至成熟期的氮素积累量为手栽&gt;机插&gt;直播,不同种植方式间差异均达显著或极显著水平;氮素吸收利用率,手栽、机插、直播分别为44.49%、39.00%、31.41%,且手栽和机插为早熟晚粳&gt;迟熟中粳&gt;中熟中粳,直播为中熟中粳&gt;迟熟中粳&gt;早熟晚粳,同一生育类型常规粳稻大于杂交粳稻;百千克籽粒需氮量,手栽、机插、直播分别为1.959 (1.900~2.009) kg、1.842 (1.681~1.914) kg、1.638 (1.540~1.721) kg,常规粳稻手栽与机插间差异不显著,但都显著高于直播,杂交粳稻不同种植方式间差异均显著,直播稻为中熟中粳&gt;迟熟中粳&gt;早熟晚粳,手栽和机插在不同生育类型品种间没有明显变化规律。科学选择种植方式并配套适宜的品种类型对实现水稻氮素高效吸收和利用具有重要意义。
[29]
穆麒麟, 田文涛, 党程成, 等. 叶面喷施能百旺2.0对水稻产量、品质、干物质积累及肥料利用率的影响[J]. 作物研究, 2023, 37(2):124-128.
[30]
王吕, 吴玉红, 秦宇航, 等. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3):756-770.
研究紫云英稻秸秆协同还田下氮肥减量对水稻关键生育期干物质积累和氮素吸收转运及籽粒产量的影响, 为水稻绿色高效栽培提供技术路径。试验于2019—2021年在陕西省汉中市农业科学研究所韩塘试验基地进行, 采用随机区组设计, 重复3次。供试水稻品种为优质籼稻‘黄华占’。共设5个处理, (1) 冬闲水稻秸秆不还田, 不施肥(CK); (2) 冬闲水稻秸秆不还田, 常规施氮(NPK); (3) 冬作紫云英水稻秸秆还田, 常规施氮(GRN<sub>100</sub>); (4) 冬作紫云英水稻秸秆还田, 氮肥减量20% (GRN<sub>80</sub>); (5) 冬作紫云英水稻秸秆还田, 氮肥减量30% (GRN<sub>70</sub>)。分析了水稻齐穗期和成熟期干物质积累、氮素累积量、氮素吸收与利用。结果表明: 1) 与NPK相比, 紫云英水稻秸秆协同还田各处理水稻产量增加3.50%~7.65%; 齐穗期茎鞘、叶片、穗干物重分别增加25.54%~44.79%、44.79%~53.74%、33.76%~61.81%, 成熟期茎鞘、叶片干物重增加6.87%~25.57%、20.87%~23.46%; 且与GRN<sub>100</sub>相比, GRN<sub>80</sub>和GRN<sub>70</sub>水稻产量增加4.00%和2.77%, 齐穗期穗干物重增加21.33%、4.56%, GRN<sub>80</sub>有效穗增加7.77%, 千粒重增加2.56%, GRN<sub>80</sub>成熟期茎鞘、穗干物重增加17.52%、10.91%。2) 与NPK相比, 紫云英水稻秸秆协同还田各处理齐穗期茎鞘、叶片、穗氮累积量增加34.84%~60.59%、50.41%~69.28%、26.57%~45.35%, 成熟期增加48.61%~54.78%、54.67%~91.81%、6.42%~19.96%, 茎鞘氮转运量增加16.89%~64.99%, 叶片氮转运量增加47.85%~73.05%, 氮转运贡献率增加27.75%~41.09%; 且与GRN<sub>100</sub>相比, GRN<sub>80</sub>穗中氮增量增加19.76%, 茎鞘氮转运量、茎鞘转运率、叶片转运率、氮素转运效率分别增加7.46%、2.73%、9.35%、6.86%。3) 与NPK相比, 紫云英水稻秸秆协同还田各处理氮素干物质生产效率减低10.64%~ 20.92%, 氮肥生理利用率减少17.88%~32.89%, 氮肥农学效率增加7.81%~63.03%, 氮素回收率增加57.36%~97.19%, 氮肥偏生产力增加3.55%~52.00%; 且与GRN<sub>100</sub>相比, GRN<sub>80</sub>和GRN<sub>70</sub>氮素干物质生产效率增加13.00%、10.97%, 氮肥生理利用率增加12.34%、22.37%, 氮肥农学效率显著增加35.66%、51.21%, 氮素回收率显著增加21.04%、25.52%, 氮肥偏生产力增加30.04%、46.79%。紫云英水稻秸秆协同还田下减氮20%或30%能够显著提高水稻产量, 增加氮素吸收转运, 提高氮素利用, 是适宜汉中地区水稻生产的一种绿色高效栽培模式。
[31]
刘丽华, 李杨, 秦猛, 等. 膨化秸秆还田对寒地水稻养分积累、转运、分配及产量的影响[J]. 南方农业学报, 2023, 54(2):497-505.
[32]
陈智慧, 王火焰, 周健民, 等. 不同钾素水平对水稻不同部位含钾量的影响[J]. 土壤, 2013, 45(3):489-494.
[33]
罗成科, 肖国举, 张峰举, 等. 不同浓度复合盐胁迫对水稻产量和品质的影响[J]. 干旱区资源与环境, 2017, 31(1):137-141.
[34]
周根友, 翟彩娇, 邓先亮, 等. 盐逆境对水稻产量、光合特性及品质的影响[J]. 中国水稻科学, 2018, 32(2):146-154.
[35]
崔士友, 张洋, 翟彩娇, 等. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022(1):1-6.
[36]
翟彩娇, 张蛟, 崔士友, 等. 盐逆境对耐盐水稻穗部性状及产量构成因素的影响[J]. 中国农学通报, 2022, 38(4):1-9.
探明不同盐逆境水平对耐盐水稻穗部性状及产量构成因素的影响,旨在为沿海滩涂水稻种植和耐盐水稻高产育种提供科学依据。以‘扬农稻1号’(V<sub>1</sub>)、‘南粳5055’(V<sub>2</sub>)和‘通海粳18-2’(V<sub>3</sub>)为试材,利用盐池设施设置0 g/kg(S<sub>0</sub>)、1.5 g/kg(S<sub>1</sub>)、3 g/kg(S<sub>2</sub>)3个不同盐分水平,采用裂区试验,测定分析水稻穗长、穗重、每穗粒数、枝梗数、结实率等穗部性状及产量性状差异。结果表明:(1)不同盐逆境下,S<sub>1</sub>水平下的每穗粒数和千粒重显著低于S<sub>0</sub>水平下,S<sub>2</sub>水平下的水稻产量、有效穗数、每穗粒数、千粒重及结实率均低于或显著低于S<sub>0</sub>、S<sub>1</sub>水平下;与S<sub>0</sub>水平相比,在S<sub>2</sub>水平下一次枝梗的枝梗数、总粒数、实粒数和总粒重分别降低了9.10%、8.69%、10.03%和14.47%,S<sub>2</sub>水平下二次枝梗的枝梗数、总粒数、实粒数、结实率、总粒重、千粒重分别降低了14.69%、18.05%、22.49%、8.04%、17.21%、5.95%。(2)不同水稻品种间,与非盐逆境相比,盐逆境下水稻品种的产量、每穗粒数、一二次枝梗数、一二次枝梗的总粒数、一二次枝梗的实粒数均表现为V<sub>3</sub>&gt;V<sub>1</sub>&gt;V<sub>2</sub>。(3)盐逆境对水稻的相对抑制率影响结果表明,盐逆境主要抑制水稻V<sub>1</sub>、V<sub>2</sub>的每穗粒数,特别是二次枝梗数和二次枝梗总粒数;而盐逆境对V<sub>3</sub>的水稻穗部性状的相对抑制率均较低。(4)相关性分析表明,水稻产量与每穗粒数、二次枝梗数呈极显著正相关,与二次枝梗总粒数呈显著正相关;盐逆境下水稻产量与水稻穗长、穗重、一次枝梗性状(枝梗数和总粒数)、二次枝梗性状(枝梗数、总粒数、千粒重和结实率)之间呈显著正相关。盐逆境对水稻产量会产生不利的影响,且盐逆境下水稻产量降低的主要是每穗粒数明显减少引起的,特别是水稻二次枝梗数、二次枝梗总粒数和二次枝梗总粒重明显减少引起的。
[37]
张蛟, 崔士友, 翟彩娇, 等. 盐胁迫下缓释肥和氮减量对水稻生长、产量及土壤特性的影响[J]. 江苏农业科学, 2023, 51(3):94-100.
[38]
王振华. 不同时期喷施硅制剂对水稻硅素吸收和产量的影响[D]. 哈尔滨: 东北农业大学, 2019.
[39]
胡婧怡, 陶荣浩, 周晓天, 等. 硅和硒肥叶面调控对水稻镉铅吸收积累的影响[J]. 农业资源与环境学报, 2023, 40(6):1308-1318.
[40]
任海, 付立东, 王宇, 等. 不同硅肥施入模式对水稻产量及品质的影响[J]. 东北农业科学, 2019, 44(4):13-18.
[41]
杜海萌, 韦还和, 余清源, 等. 水稻叶面肥研究的应用进展与展望[J]. 作物杂志, 2022(3):33-38.
PDF(1257 KB)

Accesses

Citation

Detail

Sections
Recommended

/