Effects of Plant Growth Regulators on Growth, Development and Lodging Resistance of Intercropped Soybeans

LIUPing, BIHaibin, YANGYunfeng, ZHUOMa, ZHAOQingqing, WENTinggang, CHENYuli

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (11) : 16-21.

PDF(1278 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1278 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (11) : 16-21. DOI: 10.11924/j.issn.1000-6850.casb2024-0638

Effects of Plant Growth Regulators on Growth, Development and Lodging Resistance of Intercropped Soybeans

Author information +
History +

Abstract

In order to clarify the effective ways for intercropping soybean to resist lodging, a field experiment of spraying plant growth regulators on soybean corn strip composite planting was conducted in the summer soybean growing season of 2023. A split zone design was adopted, with the main zone as the planting mode. Two planting modes were set up: soybean corn 6:4 mode (M1) and soybean corn 6:3 mode (M2); the sub zone was treated with growth regulators, consisting of four treatments: R1 (silicon fertilizer), R2 (silicon fertilizer+27.5% hexanoic·mepiquat chloride), R3 (27.5% hexanoic·mepiquat chloride), and R4 (water control); all together there were eight treatments. By systematically analyzing the differences in SPAD values, canopy nutritional indicators, lodging resistance traits, and yield indicators of soybean top three leaves among different treatments, the effects of silicon fertilizer and hexanoic·mepiquat chloride on the growth, development, and lodging resistance of intercropped soybeans were clarified. The results showed that during the grain filling stage of summer soybeans, the nutritional parameters of the plant canopy in each treatment were higher than those of the control. The R2 treatment had the highest stem bending resistance, stem dry weight, and stem plumpness. The main stem length of the R2 and R3 treatments was lower than that of the R1 and R4 treatments, but the differences between treatments were not significant; the yield and yield components (number of pods per plant, number of grains per plant, and 100 grain weight) of each treatment were higher than those of the control R4 treatment; the yield was highest in the R2 treatment, and the yield of the M1R2 treatment was higher than that of the M2R2 treatment; the lodging resistance index was significantly positively correlated with stem bending resistance and stem thickness, and negatively correlated with main stem length. Both silicon fertilizer and hexanoic·mepiquat chloride spray can improve the nutritional indicators of the summer soybean canopy during the grain filling stage. At the same time, by increasing the stem bending resistance and stem plumpness of soybean plants, we can reduce plant height, improve soybean lodging resistance index, and inhibit plant lodging. In summary, silicon fertilizer and hexanoic·mepiquat chloride can promote plant photosynthetic production and yield formation by enhancing plant resistance, reducing plant height, and improving plant spatial structure.

Key words

summer soybean / plant growth regulators / silicon fertilizer / hexanoic·mepiquat chloride / growth and development / lodging resistance / soybeans and corn strip intercropping

Cite this article

Download Citations
LIU Ping , BI Haibin , YANG Yunfeng , et al . Effects of Plant Growth Regulators on Growth, Development and Lodging Resistance of Intercropped Soybeans[J]. Chinese Agricultural Science Bulletin. 2025, 41(11): 16-21 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0638

References

[1]
王禹, 李干琼, 喻闻, 等. 中国大豆生产现状与前景展望[J]. 湖北农业科学, 2020, 59(21):201-207.
[2]
李国清, 丛新军, 李国瑜, 等. 鲁中地区肥料与根瘤菌合理配施对大豆生长的影响[J]. 大豆科学, 2021, 40(5):682-687.
[3]
丁娇, 韩晓增, 邹文秀, 等. 长期施肥对大豆生长状况及产量的影响[J]. 大豆科学, 2012, 31(5):778-783.
[4]
邹俊林. 套作大豆苗期茎秆抗倒特征及其与木质素合成的关系研究[D]. 成都: 四川农业大学, 2015.
[5]
王竹, 贺阳冬, 杨继芝, 等. 套作模式下播期对不同熟性大豆茎叶形态及产量的影响[J]. 河南农业科学, 2009(8):40-45.
在麦/玉/豆套作模式下,研究了不同播期对不同熟性大豆茎叶形态及产量的影响。结果表明:3种熟性大豆在当地均有各自最适宜的播期。浙春3号的最适播期是7月6日,乐豆1号的最适播期是6月15日,而贡选1号的适宜播期是6月15日和6月22日,两者间产量差异不显著。晚熟大豆品种(贡选1号)较早熟品种(浙春3号)和中熟品种(乐豆1号)能显著缩短与玉米的生殖生长共生期,独立生长期最长,从而减轻了生育前期玉米对它的弱光伤害,保证了适宜的株高、较大的茎粗和茎干重以及理想的叶面积指数和比叶重。综合大豆的熟性和播期2个因素,麦/玉/豆套作模式下的最优组合为贡选1号在6月15日至6月22日之间播种。
[6]
刘卫国, 蒋涛, 余跃辉, 等. 大豆苗期茎秆对隐蔽胁迫响应的生理机制初探[J]. 中国油料作物学报, 2010, 32(3):395-402.
[7]
钟开珍, 梁江, 韦清源, 等. 大豆种质倒伏性遗传及其与主要农艺性状的相关分析[J]. 大豆科学, 2012, 31(5):703-706.
[8]
贺春林, 李卫东, 薛应离, 等. 夏大豆品种抗倒伏性的遗传研究[J]. 河南农业大学学报, 1993, 27(2):196-200.
[9]
范冬梅, 杨振, 马占洲, 等. 多环境条件下大豆倒伏性相关形态性状的QTL分析[J]. 中国农业科学, 2012, 13(12):2518-2552.
[10]
向达兵, 郭凯, 雷婷, 等. 磷钾营养对套作大豆茎秆形态和抗倒性的影响[J]. 中国油料作物学报, 2010, 32(3):395-402.
以贡选1号大豆品种为材料,采用两因素随机区组设计,研究了磷钾营养对套作大豆茎秆形态和抗倒性的影响。结果表明,施用磷钾显著影响套作大豆茎秆的抗倒能力。茎秆基部节间粗度、C/N比、细胞壁纤维素、木质素含量、机械强度、抗倒指数(SLRI)均随施钾量的增加而增加,随施磷量的增加呈现出先增后降的趋势,而基部节间长度、主茎高、倒伏率均随磷钾施用量的增加而降低。SLRI与基部第1、2节间粗度、茎秆木质素、纤维素含量、机械强度及C/N比呈显著的正相关,与基部节间长度、主茎长、实际倒伏率呈极显著负相关。适宜的磷钾水平(P2O5 17kg/hm2, K2O 112.5kg/hm2)能提高套作大豆SLRI,降低其倒伏率。
[11]
梁建秋, 于晓波, 吴海英, 等. 密度及烯效唑喷施对套作大豆南夏豆25抗倒性及产量的影响[J]. 大豆科学, 2017, 36(1):33-40.
[12]
田兴. 调节剂混用对大豆抗性酶及抗倒伏性的影响[D]. 大庆: 黑龙江八一农垦大学, 2018.
[13]
任果香, 盛晋华, 刘学义, 等. 烯效唑对春大豆生长发育及产量的影响[J]. 现代农业科学, 2008, 15(6):26-28.
[14]
闫艳红, 杨文钰, 杨小丽, 等. 叶面喷施烯效唑对大豆农艺性状的影响[J]. 青岛农业大学学报(自然科学版), 2008, 25(3):215-218.
[15]
万燕, 杨文钰. 不同生长调节剂叶面喷施对套作大豆形态及产量的影响[J]. 大豆科学, 2009, 28(1):63-66.
[16]
郭凯. 磷、钾营养对套作大豆钾素积累分配和植株抗倒性能的影响[D]. 雅安: 四川农业大学, 2009.
[17]
陈喜凤, 孙宁, 谷岩, 等. 钾调控对大豆茎秆抗倒性能的影响[J]. 吉林农业科学, 2013, 38(5):25-28.
[18]
李淑贤. 硅对套作大豆的耐荫抗倒效应及提高产量的机理研究[D]. 成都: 四川农业大学, 2019.
[19]
谢甫娣, 董钻, 王晓光, 等. 大豆倒伏对植株性状和产量的影响[J]. 大豆科学, 1993, 12(1):81-85.
[20]
王曙明. 大豆倒伏问题应引起高度重视[J]. 大豆科技, 2009(1):7.
[21]
周蓉, 涂赣英, 沙爱华, 等. 大豆种质的倒伏性调查及其相关农艺性状分析[J]. 大豆科学, 2007, 26(1):41-44.
[22]
张中华. 不同大豆品种间茎秆特性与抗倒伏性关系研究[D]. 贵阳: 贵州大学, 2022.
[23]
程彬, 刘卫国, 王莉, 等. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响[J]. 中国农业科学, 2021, 54(19):4084-4096.
【目的】阐明玉米-大豆带状间作下大豆植株冠层在不同种植密度下的光环境变化规律,明确种植密度对间作大豆叶片光合特性、产量形成及茎秆抗倒的影响,为构建寡日照地区间作大豆合理群体密度提供理论参考。【方法】本研究以大豆(川豆-16)和玉米(正红-505)为试验材料。采用双因素随机区组设计,主因素为种植方式,设玉米-大豆带状间作和大豆带状单作2个水平,副因素为大豆的3个种植密度(PD1=17株/m<sup>2</sup>,PD2=20株/m<sup>2</sup>,PD3=25株/m<sup>2</sup>),研究种植密度对间作大豆冠层内部光环境变化、叶片光合特性、植株生长动态、田间倒伏率及产量构成等的影响。【结果】2年结果表明,在玉米-大豆带状间作系统中,大豆生长中后期受高位作物玉米遮荫和自荫性增加的影响,其植株群体冠层内部的光合有效辐射(PAR)、叶面积指数(LAI)、叶片光合能力、分枝数及产量显著降低,但受玉米影响的程度因大豆种植密度的不同而不同。在间作模式下,PD1和PD2处理的大豆植株群体冠层光合有效辐射比PD3处理分别增加了45.4%和24.8%,净光合速率分别增加了46.1%和12.3%,单株有效荚数分别增加了53.2%和27.2%,单株分枝数分别增加了270.4%和140.9%,田间倒伏率分别降低了50.3%和19.3%。相关性分析发现,间作大豆的田间倒伏率与冠层内部光合有效辐射、叶片净光合速率、茎秆抗折力、茎叶干物质比、单株分枝数及单株有效荚数呈显著负相关,与株高、叶面积指数和单株无效荚数呈显著正相关。【结论】在玉米-大豆带状间作模式下,20株/m<sup>2</sup>的大豆密度(PD2)有利于创造良好的群体冠层内部光环境,降低植株田间大豆倒伏率,增加光合产物积累,从而提高大豆产量。
[24]
CHENG B, RAZA A, WANG L, et al. Effects of multiple planting densities on lignin metabolism and lodging resistance of the strip intercropped soybean stem[J]. Agronomy, 2020,10:1177.
[25]
周青, 潘国庆, 施作家. 不同时期用硅肥对水稻群体质量及产量的影响[J]. 耕作与栽培, 2001(3):25-27.
[26]
张翠珍, 邵长泉, 孟凯, 等. 水稻施用硅肥效果及适宜用量的研究[J]. 山东农业科学, 1997(3):44-45.
[27]
梁瑞凤. 水稻倒伏对产量及品质的影响及对策[J]. 中国农村小康科技, 2007(8):24.
[28]
牟英辉, 陈志梁, 程艳波, 等. 硅肥对大豆农艺性状、产量及品质的影响[J]. 大豆科学, 2012, 31(4):625-629.
[29]
杨庆凯, 桂明珠, 武天龙. 大豆品种抗倒伏能力与产量、植株形态、茎解剖性状的相关分析[J]. 大豆科学, 1986(2):113-116.
[30]
周蓉, 王贤智, 陈海峰, 等. 大豆倒伏性及其相关性状的QTL分析[J]. 作物学报, 2009, 35(1):57-65.
利用来自中豆29&times;中豆32的165个重组自交系F<sub>10</sub>进行2年田间试验, 以复合区间作图法检测与大豆倒伏及形态性状有关的QTL。结果表明, 2年分别检测到25个和19个与大豆倒伏及茎杆性状和根系性状有关的QTL, 分布于A2、C1、C2、D1a、F、G、I和L连锁群, 可解释4.4%~50.1%的表型变异。在F连锁群上, 2年均检测到倒伏主效QTL(qLD-15-1)和株高主效QTL(qPH-15-2);G连锁群和L连锁群上分别有1个主茎节数QTL和2个根重QTL在2个年份重复出现。在倒伏QTL的附近检测出株高、根重、茎叶重、茎粗、主茎节数和分枝数QTL, 表明植株地上部和地下部性状与抗倒性普遍关联;QTL定位结果与表型相关分析一致, 反映了这些形态性状表型相关的遗传特性。部分性状QTL存在共位性, 但是未在2个年份稳定表达。
PDF(1278 KB)

Accesses

Citation

Detail

Sections
Recommended

/