Research Progress in Extraction Methods for Active Ingredients of Plant-Derived Pesticides

LIU Dongliang, ZENG Kai, LIU Chunhai

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (17) : 126-131.

PDF(1077 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1077 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (17) : 126-131. DOI: 10.11924/j.issn.1000-6850.casb2024-0653

Research Progress in Extraction Methods for Active Ingredients of Plant-Derived Pesticides

Author information +
History +

Abstract

Plant-derived pesticides are processed natural agents obtained from botanical sources. Reviewing extraction advances of their active ingredients provides valuable references for the development and application of these pesticides. This article focuses on the extraction methods for active ingredients of plant- derived pesticides, systematically summarizing the basic principles, application examples, and extraction effects of both traditional and modern extraction methods through a literature review. Traditional extraction methods, such as maceration and Soxhlet extraction, are simple to operate and low-cost, but they have limited extraction efficiency and are prone to contamination. Rapid extraction methods can improve extraction efficiency, they are still limited by solvent selection and extraction conditions. Modern extraction technologies, such as microwave-assisted extraction and ultrasonic extraction, significantly enhance the efficiency and purity. Supercritical fluid extraction achieves efficient separation and purification, while dynamic countercurrent extraction using tank arrays improves extraction efficiency through optimized process layout. Membrane separation technology and high- speed countercurrent chromatography further purify components. Extraction methods for active ingredients of plantderived pesticides are diverse, with each traditional and modern extraction technique having its own strengths and weaknesses. In the future, extraction methods should be scientifically and reasonably selected and applied based on the characteristics of plant-derived pesticides and production needs.

Key words

plant- derived pesticides / active ingredients / extraction methods / research progress / traditional extraction methods / modern extraction methods

Cite this article

Download Citations
LIU Dongliang , ZENG Kai , LIU Chunhai. Research Progress in Extraction Methods for Active Ingredients of Plant-Derived Pesticides[J]. Chinese Agricultural Science Bulletin. 2025, 41(17): 126-131 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0653

References

[1]
张兴, 马志卿, 冯俊涛, 等. 植物源农药研究进展[J]. 中国生物防治学报, 2015, 31(5):685-698.
植物源农药是国内外新农药研发的热点之一。本文从植物源农药的研究历史、现状、产业化开发情况、使用技术要点、特殊活性作用、生物合成技术、环境安全性、作用机理、残渣综合利用及“药肥合一”在新植物保护理论与实践中的作用等几个方面进行了简要论述,提出了植物源农药研究、开发、应用、推广及管理中存在的一些问题和对策,并对该类农药今后的发展方向与重点进行了讨论。
[2]
章杰, 罗巧, 刘科, 任丹, 等. 植物源生物碱类杀虫剂及其登记应用进展[J]. 世界农药, 2023, 45(3):13-22.
[3]
张鑫, 叶非. 植物源农药中生物碱提取和纯化技术进展[J]. 农药科学与管理, 2007(2):28-31.
[4]
黄四平, 常丹, 王小利, 等. 浸渍法提取苦皮藤素的工艺条件研究[J]. 应用化工, 2015, 44(1):85-86,91.
[5]
秦学功, 元英进. 苦豆子种子中生物碱的冷浸提取实验研究[J]. 中草药, 2001, 32(7):604-606.
[6]
姜萍, 叶汉玲, 安鑫南. 苦楝提取物的提取及其抑菌活性的研究[J]. 林产化学与工业, 2004, 24(4):23-27.
[7]
郭霞, 黄丹慜, 苟志辉, 等. 运用乙醇渗漉法优化三叶鱼藤中鱼藤酮提取工艺——基于响应面法[J]. 华中师范大学学报(自然科学版), 2020, 54(1):60-64.
[8]
张静玉. 黄连素超声提取与索氏提取工艺的对比研究[J]. 化工管理, 2015(25):206-207.
[9]
唐英. 川楝树中生物农药活性组分的提取分离方法研究[D]. 重庆: 重庆大学, 2003.
[10]
龙德清, 丁宗庆, 谢茂军. 酸性醇回流法提取魔芋中的总生物碱研究[J]. 食品科学, 2003, 23(7):87-89.
[11]
王有琼, 段琼芬, 李晓升. 快速萃取法提取印楝素[J]. 农药, 2007, 46(2):110-111,120.
[12]
杨帆, 陆娟, 刘春明, 等. 快速溶剂萃取提取山豆根中苦参碱和氧化苦参碱最佳条件研究[J]. 中国药学杂志, 2012, 47(7):495-499.
[13]
郭娟, 范晓丹, 杨日福, 等. 植物活性成分提取新技术及最新研究进展[J]. 现代化工, 2011, 31(8):22-26.
[14]
王艳, 张铁军. 微波萃取技术在中药有效成分提取中的应用[J]. 中草药, 2005, 36(3):470-473.
[15]
游国叶, 史琼, 杜晶. 星点设计-响应面法优化密闭微波辅助提取辣椒素工艺[J]. 中国现代应用药学, 2021, 38(8):959-965.
[16]
于秋菊, 耿凤英, 张梦蝶. Box-Behnken响应面法优化银杏酚酸提取工艺及其抗肿瘤活性的研究[J]. 化学研究与应用, 2022, 34(4):842-849.
[17]
郝金玉, 黄若华, 王平艳, 等. 微波萃取除虫菊的研究[J]. 农药, 2001, 40(8):15-16.
[18]
韩伟, 郝金玉, 薛伯勇, 等. 微波辅助提取青蒿素的研究[J]. 中成药, 2002, 24(2):83-86.
[19]
赵淑英, 宋湛谦, 高宏, 等. 微波辅助法提取印楝素的研究[J]. 林产化学与工业, 2003, 23(4):47-50.
[20]
TIWARI B K. Ultrasound: A clean, green extraction technology[J]. Trends in analytical chemistry, 2015, 71:100-109.
[21]
陈栋贤, 黄建华, 张骥, 等. 超声波辅助提取-高效液相色谱法测定烟草废弃物中烟碱的含量[J]. 理化检验(化学分册), 2023, 59(5):547-549.
[22]
庞朝海, 方功, 王定勇. 响应面优化超声辅助提取独子藤中雷公藤红素(英文)[J]. Journal of Chinese pharmaceutical sciences, 2017, 26(2):130-138.
<p align="justify"><span style="line-height: 119%; letter-spacing: -0.15pt; font-size: 9pt; language: en-US">In the present study, we aimed to investigate the effects of key extraction parameters including extraction time (10-20 min),</span><span style="line-height: 119%; font-size: 9pt; language: en-US">extraction temperature (30-60 </span><span style="line-height: 119%; font-size: 9pt; language: en-US">&deg;</span><span style="line-height: 119%; font-size: 9pt; language: en-US">C), ultrasonic power (60-90 W) and solvent-to-solid (S/S) ratio (10-30 mL/g) on yield of celastrol from </span><span style="line-height: 119%; font-style: italic; font-size: 9pt; language: en-US">Celastrus monospermus</span><span style="line-height: 119%; font-size: 9pt; language: en-US"> Roxb. To optimize the conditions, we investigated the effects of parameters on the ultrasound assisted</span><span style="line-height: 119%; font-size: 9pt; language: en-US"> extraction (UAE) with the Box-Behnken Design (BBD), one widely used form of Response Surface Methodology (RSM). In all tested solvents, ethanol was the most effective for celastrol extraction, followed by methanol, ethanol, ethyl acetate, </span><span style="line-height: 119%; font-style: italic; font-size: 9pt; language: en-US">n</span><span style="line-height: 119%; font-size: 9pt; language: en-US">-butanol and water. A second order polynomial model was fitted well to the extraction experimental data with R</span><span style="line-height: 119%; font-size: 5.993pt; language: en-US"><sup>2</sup></span><span style="line-height: 119%; font-size: 9pt; language: en-US"> of 0.9928. Extraction yield of 3.116 mg/g was obtained for celastrol under the optimized extraction conditions of extraction time (20 min), extraction </span><span style="line-height: 119%; font-size: 9pt; language: en-US">temperature (46 &deg;C), ultrasonic power (60 W) and S/S ratio (30 mL/g). Experimental validation was performed, and the experimental</span><span style="line-height: 119%; font-size: 9pt; language: en-US"> values agreed well with the predicted values. The results indicated that the UAE was good extraction material for celastrol from </span><span style="line-height: 119%; font-style: italic; font-size: 9pt; language: en-US">C. monospermus</span><span style="line-height: 119%; font-size: 9pt; language: en-US"> Roxb.</span></p>
[23]
万俊, 贾曦文, 刘书渊, 等. 超声辅助提取青蒿素工艺的响应面法优化研究[J]. 时珍国医国药, 2022, 33(1):98-100.
[24]
张宏川, 思洋, 孙宁阳, 等. 响应面分析法优化黄连生物碱提取工艺的研究[J]. 中药材, 2016, 39(1):143-146.
[25]
白靖文, 丁良军, 叶非. 植物源农药博落回超声辅助提取方法[J]. 农药, 2010, 49(12):876-878.
[26]
裴爱田. 正交试验法优化超声波提取苦楝果实中川楝素[J]. 西部林业科学, 2015, 44(6):106-109.
[27]
王秋芬, 宋湛谦, 赵淑英, 等. 超声波辅助溶剂萃取印楝素条件优化[J]. 农药, 2004, 43(8):351-353.
[28]
武剑, 石绍伟, 胡利娜. 超临界CO2萃取技术在植物化学物提取中的应用[J]. 食品研究与开发, 2014, 35(15):52-56.
[29]
杜爱玲, 孙公平, 王威强, 等. 超临界二氧化碳萃取苦楝皮中有效成分的初步研究[J]. 林产化学与工业, 2006, 26(2):61-64.
[30]
TIAN L, ZHOU M, PAN X, et al. Supercritical CO2 extraction and response surface optimization of ginkgolic acids from ginkgo biloba exopleura[J]. Korean journal of chemical engineering, 2015, 32:1649-1654.
[31]
张会平, 唐倩如, 鄢瑛. 超临界CO2萃取烟草中天然烟碱的工艺研究[J]. 华南理工大学学报(自然科学版), 2024, 52(7):81-87.
[32]
李红茹, 李淑芬, 段宏泉, 等. 超临界流体萃取雷公藤中有效成分的工艺优化[J]. 天津大学学报, 2007(3):269-274.
[33]
黄继光, 周利娟, 徐汉虹, 等. 非洲山毛豆中鱼藤酮CO2超临界流体的萃取效果[J]. 华中农业大学学报, 2006, 25(1):43-45.
[34]
刘修树, 周晶, 何晓丽, 等. 超临界-CO2法萃取苦参中苦参碱的工艺优化[J]. 中国现代中药, 2012, 14(11):46-48.
[35]
盛桂华, 周泉城. 超临界CO2分步萃取山豆根苦参碱工艺研究[J]. 江苏农业科学, 2007(6):261-264.
[36]
张立伟, 毛建明, 杨频. 超临界二氧化碳流体萃取中药苦参的生物总碱[J]. 化学研究与应用, 2003, 15(1):129-130.
[37]
李广泽, 陈安良, 马志卿, 等. 非洲山毛豆中鱼藤酮的超临界流体萃取技术研究[J]. 农药学学报, 2005, 7(2):144-149.
[38]
谢志鹏, 刘雪松, 陈勇, 等. 动态罐组式逆流提取技术在中药生产中的应用研究进展[J]. 中国中药杂志, 2007(10):884-887.
[39]
杨军, 罗喜荣, 范菊娣, 等. 罐组式动态逆流提取印楝素的工艺[J]. 农药, 2010, 49(6):413-415.
[40]
宋晓春, 刘晓霞, 魏舒畅, 等. 三罐组动态逆流提取当归中阿魏酸的工艺研究[J]. 中国中医药信息杂志, 2015, 22(8):96-98.
[41]
李德灵, 林锦铭, 陈海平, 等. 连续动态逆流提取对香菇多糖抗氧化活性的影响[J]. 包装与食品机械, 2021, 39(3):35-40.
[42]
戚毅, 蔡铭, 谢志鹏, 等. 动态罐组式逆流提取虎杖中大黄素的工艺研究[J]. 中草药, 2008, 39(8):1171-1173.
[43]
谢慧荣, 罗忠圣, 钱余, 等. 膜分离技术在天然产物中的应用[J]. 食品科技, 2021, 46(5):104-107.
[44]
李存玉, 马赟, 龚柔佳, 等. 响应面分析法耦合调节Donnan效应优化苦参提取液的纳滤浓缩工艺[J]. 中草药, 2016, 47(19):3395-3400.
[45]
马朝阳, 王洪新. 超滤法纯化苦豆子酸提取物中的生物碱[J]. 郑州工程学院学报, 2003, 24(4):56-58,63.
[46]
王龙德, 崔鹏, 路绪旺, 等. 微滤膜分离提纯苦楝素的研究[J]. 天然产物研究与开发, 2011, 23(4):742-746.
[47]
彭诗涛, 刘振丽, 宋志前, 等. 高速逆流色谱技术在中药及天然产物中的应用研究[J]. 中国中医基础医学杂志, 2021, 27(5):821-829.
[48]
黄秀珍, 顿珠次仁, 谢一辉, 等. 高速逆流色谱法分离制备独活中蛇床子素[J]. 中国实验方剂学杂志, 2015, 21(12):50-53.
[49]
樊希望, 梁上疆, 杜传荣, 等. 高速逆流色谱分离纯化雷公藤中的雷公藤红素[J]. 天然产物研究与开发, 2015, 27(1):77-79.
[50]
于保青, 胥维昌. 应用高速逆流色谱分离瑞香狼毒粗提物中的4个黄酮类化合物[J]. 农药, 2016, 55(11):801-803.
[51]
颜继忠, 褚建军, 金洁. 高速逆流色谱分离黄柏中的小檗碱和巴马亭[J]. 浙江工业大学学报, 2004, 32(4):415-417.
PDF(1077 KB)

Accesses

Citation

Detail

Sections
Recommended

/