Evaluation of Salt Tolerance of Perennial Rice at Seedling Stage

LIUYongxiu, ZHAOYing, XULing, YUANYuan, ANGLei, LUOJing, YANGTao, ZHANGQinghua, XUYeju, ZHANGShilai

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (23) : 1-9.

PDF(2222 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2222 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (23) : 1-9. DOI: 10.11924/j.issn.1000-6850.casb2024-0675

Evaluation of Salt Tolerance of Perennial Rice at Seedling Stage

Author information +
History +

Abstract

This study aims to assess the salt tolerance of perennial rice varieties (lines) ‘PR23’, ‘PR24’, ‘PR25’, ‘PR26’, ‘PR101’, ‘PR107’, and ‘PR109’, and to screen out elite salt-tolerant germplasm. The experiment employed NaCl solutions at concentrations of 0, 50, 100, 150, and 200 mmol/L to conduct salinity stress treatments on perennial rice varieties (lines) and the parent ‘RD23’. The vitality parameters (seedling height, root length, fresh weight, dry weight, etc.) and salt tolerance coefficients of varieties were determined under different NaCl concentrations. Principal component analysis (PCA) and the membership function method were used to comprehensively evaluate the salt tolerance performance of the varieties (lines). The results showed that: (1) significant differences in salt damage levels among varieties (lines) were observed when NaCl concentration reached 150 mmol/L. Among all the phenotypic traits associated with salt stress, except for root length, all other traits under the 150 mmol/L NaCl treatment showed significant differences from the control group (P < 0.05), establishing this concentration as the optimal level for screening salt tolerance in perennial rice during the seedling stage. (2) PCA of the relative values of salt tolerance traits under the 150 mmol/L NaCl treatment generated membership function values. Combining with the principal component variance contribution rate weight, the comprehensive evaluation D value was obtained, showing that ‘Yun Da 107 (PR107) ’exhibited the strongest comprehensive salt tolerance ability at the seedling stage, while ‘PR101’ showed the weakest salt tolerance capacity. Other varieties (lines) had intermediate salt tolerance levels. This study provides high-quality germplasm resources for rice salt tolerance breeding and lays the foundation for future improvements in rice salt tolerance. This study not only identifies elite salt-tolerant rice germplasm resources through phenotypic and genotypic assessments, laying a foundation for genetic improvement of rice salt tolerance, but also provides critical data support for further research on salinity stress tolerance mechanisms.

Key words

salt tolerance / perennial rice / seedling stage / NaCl stress / principal component analysis (PCA) / membership function method

Cite this article

Download Citations
LIU Yongxiu , ZHAO Ying , XU Ling , et al . Evaluation of Salt Tolerance of Perennial Rice at Seedling Stage[J]. Chinese Agricultural Science Bulletin. 2025, 41(23): 1-9 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0675

References

[1]
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual review of plant biology, 2008, 59(1):651-681.
[2]
PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology environmental safety, 2005, 60(3):324-349.
[3]
王旭明, 麦绮君, 周鸿凯, 等. 盐胁迫对4个水稻种质抗逆性生理的影响[J]. 热带亚热带植物学报, 2019, 27(2):149-156.
[4]
FLOWERS T, YEO A. Breeding for salinity resistance in crop plants: where next?[J]. Functional plant biology, 1995, 22(6):875-884.
[5]
孟繁昊, 王聪, 徐寿军. 盐胁迫对植物的影响及植物耐盐机理研究进展[J]. 内蒙古民族大学学报(自然科学版), 2014, 29(3):315-318,373.
[6]
GUO M X, WANG R C, WANG J, et al. ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice[J]. Plos one, 2014, 9(12):e112515.
[7]
KUMAR K, KUMAR M, KIM S R, et al. Insights into genomics of salt stress response in rice[J]. Rice, 2013, 6:1-15.
[8]
GARG A K, KIM J K, OWENS T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J]. Proceedings of the national academy of sciences, 2002, 99(25):15898-15903.
[9]
刘梦霜, 郭海峰, 陈观秀, 等. 不同水稻品种对NaCl胁迫的生理响应及耐盐性评价[J]. 热带作物学报, 2023, 44(2):326-336.
土壤盐渍化是限制作物生长的重要因素之一,培育水稻耐盐新品种,对扩大水稻种植面积具有重要意义。为探究不同品种水稻幼苗的生长及生理的变化趋势,明确不同水稻品种苗期耐盐性强弱,以5个水稻品种为试验材料,采用水培方式研究不同浓度NaCl(0、70、140 mmol/L)处理对水稻苗期生长及相关生理指标的影响,并利用主成分分析及隶属函数法进行综合评价其耐盐性。结果表明,盐胁迫下,盐分对各水稻品种的根长、根表面积、根体积、根尖数及根平均直径总体上起抑制作用,其中‘HH11’和‘日本晴’的根系生长指标值变化较小,‘9311’和‘JX99’的根长、根体积、根表面积、根尖数均受到显著抑制,‘HD961’平均根尖数最多。随着NaCl浓度增大,各品种株高、根系活力总体呈逐渐下降趋势,叶绿素总含量、相对电导率、丙二醛含量、脯氨酸含量、根系Na<sup>+</sup>/K<sup>+</sup>总体呈上升趋势,而根系Na<sup>+</sup>、K<sup>+</sup>含量呈先升高后减少的趋势。其中,盐胁迫下‘9311’和‘JX99’相对电导率、脯氨酸含量增幅最大,‘日本晴’和‘HH11’的丙二醛含量、根系Na<sup>+</sup>/K<sup>+</sup>增幅最小,‘日本晴’的株高下降率最小,‘HH11’的根系活力下降率最小。主成分分析表明,3个相互独立的综合指标解释了盐胁迫下16个单项指标94.23%的变化,其中根长、根体积、根尖数、叶绿素总量、丙二醛含量、电导率可作为评价水稻苗期耐盐性的主要作用因子,K<sup>+</sup>、Na<sup>+</sup>/K<sup>+</sup>、株高可作为评价水稻苗期耐盐性的次要作用因子。隶属函数结果分析表明,5个水稻品种耐盐性由强到弱依次为‘HH11’&gt;‘HD961’&gt;‘日本晴’&gt;‘9311’&gt;‘JX99’。
[10]
杨淑琴, 李培富. 水稻不同种质资源幼苗耐盐性评价[J]. 安徽农业科学, 2011, 39(33):20364-20367.
[11]
张治振, 李稳, 周起先, 等. 不同水稻品种幼苗期耐盐性评价[J]. 作物杂志, 2020(3):92-101.
[12]
刘艳, 王宝祥, 邢运高, 等. 水稻品种资源苗期耐盐性评价指标分析[J]. 江苏农业科学, 2021, 49(17):75-79.
[13]
HU F, TAO D, SACKS E, et al. Convergent evolution of perenniality in rice and sorghum[J]. Proceedings of the national academy of sciences, 2003, 100(7):4050-4054.
[14]
ZHANG S L, HU J, YANG C D, et al. Genotype by environment interactions for grain yield of perennial rice derivatives (Oryza sativa L./Oryza longistaminata) in southern China and Laos[J]. Field crops research, 2017, 207:62-70.
[15]
HUANG G F, QIN S W, ZHANG S L, et al. Performance,economics and potential impact of perennial rice PR23 relative to annual rice cultivars at multiple locations in Yunnan province of China[J]. Sustainability, 2018, 10(4):1086.
[16]
ZHANG S L, HUANG G F, ZHANG Y J, et al. Sustained productivity and agronomic potential of perennial rice[J]. Nature sustainability, 2023, 6(1):28-38.
[17]
国家水稻数据中心. 多年生稻23(PR23)品种信息[EB/OL].[2024-10-25]. https://www.ricedata.cn/variety/varis/618801.htm.
[18]
国家水稻数据中心. 云大25(PR25)品种信息[EB/OL]. [2024-10-25]. https://www.ricedata.cn/variety/varis/623354.htm.
[19]
国家水稻数据中心. 云大107(PR107)品种信息[EB/OL]. [2024-10-25]. https://www.ricedata.cn/variety/varis/623356.htm.
[20]
FERNANDO L H. The performance of the salt-resistant paddy, Pokkali in Ceylon[J]. Tropical agriculturist, 1949, 105:124-126.
[21]
朱家骝, 严中琪. 舟山盐碱地耐盐碱水稻品种的筛选试验[J]. 浙江农业科学, 2021, 62(10):1913-1915.
舟山市农业科学研究院从国内引进32个耐盐碱品种(系),进行水稻耐盐碱品种(系)筛选试验。结果表明,随着土壤含盐量的增加,水稻的株高、有效穗数、每穗实粒数、千粒重及产量均有较大幅度的下降;水稻耐盐碱性存在明显的品种间差异,筛选出甬优12、桂晶丝苗、甬优1540、玉香油占等4个耐盐碱性较强的水稻品种(系)。
[22]
国家水稻数据中心. IR29,1980品种信息[EB/OL]. https://www.ricedata.cn/variety/varis/608562.htm?608562.
[23]
GREGORIA G B, SENADHIRA D, MENDOZA R D. Screening rice for salinity tolerance[R]. Manila, Philippines: International Rice Research Institute, 1996.
[24]
GEORGE D, MALLERY P. IBM SPSS Statistics 25 Step by Step[M]. New York: Routledge, 2018.
[25]
ZENG L H, SHANNON M C, LESCH S M. Timing of salinity stress affects rice growth and yield components[J]. Agricultural water management, 2001, 48(3):191-206.
[26]
YUAN L, ZHANG L C, WEI X, et al. Quantitative trait locus mapping of salt tolerance in wild rice Oryza longistaminata[J]. International journal of molecular sciences, 2022, 23(4):2379.
[27]
李月婷. 水稻苗期耐盐种质资源的筛选与鉴定[D]. 沈阳: 沈阳农业大学,2020:8-9.
[28]
冯明辉, 陈锦珠, 薛文侠, 等. 苏北水稻品系苗期耐盐性筛选[J]. 农村经济与科技, 2018, 29(18):21.
[29]
耿雷跃, 马小定, 崔迪, 等. 水稻全生育期耐盐性鉴定评价方法研究[J]. 植物遗传资源学报, 2019, 20(2):267-275.
全生育期耐盐性是水稻种质各生育阶段耐盐性的综合反应。科学、准确、高效的水稻全生育期耐盐性鉴定评价方法是正确判别水稻种质耐盐真实性的关键所在。本研究挑选19 份不同耐盐性水稻种质作为研究材料,在正常环境与0.2%、0.3%、0.4%、0.5%、0.6%、0.7%盐处理浓度下,调查11 个农艺性状表型值并计算其耐盐系数,并运用品种间四分位差法分析,明确水稻全生育期耐盐性鉴定最适盐浓度;综合采用主成分分析、隶属函数分析、回归分析、聚类分析等多种多元统计分析方法,探索了水稻全生育期耐盐性鉴定合理评价方法。结果表明,在6 种盐胁迫浓度下各性状的耐盐系数均呈偏态分布,其中0.3%盐胁迫浓度下多数农艺性状耐盐系数品种间四分位差最大,认为0.3%盐胁迫浓度是水稻全生育期耐盐性鉴定最适盐浓度。主成分分析结果表明,11 个农艺性状的耐盐系数可简化为3 个主成分。利用主成分贡献率和隶属函数分析,进一步将3个主成分值简化为水稻耐盐性综合评价指标D 值。再利用逐步回归分析,建立了D 值与11 个农艺性状耐盐系数最优线性回归方程:D=-0.365+0.647PL+0.152PN+0.274TW。从该方程可知穗长、穗粒数和总干物重的耐盐系数是影响D 值得关键指标。利用回归分析建立的模型,可准确完成对D 值预测。根据D 值对19 份水稻种质进行聚类分析结果表明,可分为5 个类群,正好对应于水稻耐盐性划分的极强、强、中、弱、极弱5 个等级,验证了以D 值来评价耐盐性的可行性,认为D 值可作为水稻种质耐盐性评价的重要指标。
[30]
KRISHNAMURTHY S, GAUTAM R, SHARMA P, et al. Effect of different salt stresses on agro-morphological traits and utilisation of salt stress indices for reproductive stage salt tolerance in rice[J]. Field crops research, 2016, 190:26-33.
[31]
顾骁, 吴孚桂, 刘慧芳, 等. 30份水稻材料的耐盐性鉴定与评价[J]. 热带生物学报, 2020, 11(3):314-323.
[32]
周玉杰, 贺治洲, 林秋云, 等. 热带水稻种质资源全生育期耐盐性鉴定与评价[J]. 南方农业学报, 2023, 54(7):1944-1952.
PDF(2222 KB)

Accesses

Citation

Detail

Sections
Recommended

/