
Enrichment and Transport Characteristics of Trace Elements in Different Organs of Wheat Plants
GUOHaizeng, WUWeibin, DONGPeng
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (23) : 10-16.
Abbreviation (ISO4): Chin Agric Sci Bull
Editor in chief: Yulong YIN
Enrichment and Transport Characteristics of Trace Elements in Different Organs of Wheat Plants
The distribution characteristics of trace elements in wheat were analyzed in order to provide scientific basis for scientific regulation of trace element content in wheat and cultivation of new wheat varieties. The distribution characteristics of trace elements, including iron ( Fe ), manganese ( Mn ), copper ( Cu ) and zinc ( Zn ) in different organs of wheat at maturity stage were analyzed by using wheat varieties popularized in large area in northern Henan as experimental materials. The content of Fe in wheat plants ranged from 42.31 to 80.66 mg/kg, the content of Mn ranged from 212.11 to 604.89 mg/kg, the content of Cu ranged from 12.31 to 16.35 mg/kg, and the content of Zn ranged from 48.77 to 87.08 mg/kg. The variation coefficients of Fe, Mn, Cu, Zn contents in roots, stems, leaves, glume and grains of wheat plants showed different rules. The order of Mn enrichment ability of different organs of wheat was leaf > root > grain > stem > glume, and the order of Cu and Zn enrichment ability was root > grain > leaf > stem > glume. The order of Fe, Cu and Zn transport capacity of wheat organs was grain > leaf > stem > glume, and the order of Mn transport capacity was leaf > grain > stem > glume. The order of enrichment ability of trace elements in wheat roots, stems, glume and grains was Zn > Cu > Mn > Fe, and the order of enrichment ability of trace elements in leaves was Mn > Zn > Cu > Fe. The transport capacity of trace elements Cu, Mn, Zn in stems, leaves and glume of wheat was greater than that of Fe, and the order of transport capacity of trace elements in grains was Zn > Cu > Fe > Mn. The results of correlation analysis showed that there was a significant interaction between trace elements. The distribution of trace elements in wheat plants in northern Henan showed a vertical distribution pattern. The enrichment ability of trace elements in roots, leaves and grains was strong, and the transport ability of trace elements in leaves and grains was strong.
wheat / trace element / Fe, Mn, Cu, Zn / variation coefficient / distribution law / enrichment / transport
[1] |
张勇, 郝元峰, 张艳, 等. 小麦营养和健康品质研究进展[J]. 中国农业科学, 2016, 49(22):4284-4298.
作物营养和健康品质改良正在成为世界主要作物的重要研究方向和育种目标。文中围绕铁和锌、抗性淀粉和阿拉伯木聚糖、酚酸和植物固醇,从微量营养元素、功能性膳食纤维、膳食纤维、植物生物活性物质4个方面对小麦籽粒的营养品质研究进行评述,兼顾面筋过敏和赤霉菌毒素对人体健康的影响,概括与育种工作密切相关的分析测定方法、种质资源筛选、基因定位与育种研究进展。提出国内营养和健康品质研究的重点领域,建议加强四方面的工作,(1)优先进行与人体健康密切相关的铁、锌及其生物有效性影响因子植酸含量和植酸酶活性等微量营养元素、阿拉伯木聚糖和抗性淀粉等膳食纤维、酚酸和植物固醇等植物生物活性物质含量的分析,开展大规模营养元素普查工作,筛选营养价值高的育种亲本和材料;(2)加强抗赤霉病相关研究,并将其结果尽快用于育种;(3)通过关联和连锁分析开展基因定位和克隆,发掘基因功能标记或紧密连锁的分子标记,通过与常规育种紧密结合,推动生物技术育种实用化,加快品种选育进程,提高品质育种效率;(4)通过加强国际合作与国内协作,建立小麦品质研究协作网,推广普及现有实用技术并研究新型营养品质快速检测技术。
|
[2] |
温建, 孙成金, 汪松玉, 等. 中国小麦主产区重要品质性状演变分析[J]. 江苏农业科学, 2023, 51(19):75-80.
|
[3] |
刘增学, 黄晶晶. 产业链视角下河南省小麦产业研究[J]. 粮食科技与经济, 2020, 45(11):49-51.
|
[4] |
肖爱利, 蒋向. 浅析河南小麦产业发展现状及问题与对策[J]. 中国农技推广, 2022, 38(8):8-9.
|
[5] |
魏益民, 张波, 关二旗, 等. 中国冬小麦品质改良研究进展[J]. 中国农业科学, 2013, 46(20):4189-4196.
小麦是中国第三大粮食作物,在农业生产和食品工业中占有重要地位。随着中国经济和社会的发展,消费者的生活需求正在发生变化,工业化和城市化使食品工业,特别是传统食品工业化加速发展。与此同时,食品工业对食品原料的专用化和规模化,即品种的质量、规格和数量,提出了更高的要求。如何研究和解决这一矛盾,已成为小麦产业和食品工业可持续发展的新问题。本文以国内发表的论著为基础,整理、分析了小麦品质改良历史、研究进展、存在问题;讨论了小麦产业链和食品加工业的可持续发展对优质小麦的需求;结合农业生产和食品工业的发展趋势提出建议,供小麦育种、生产、收贮、食品加工等部门和研究人员参考。
|
[6] |
王健胜, 吴政卿, 周正富, 等. 国内外小麦种质主要矿质元素含量的评价分析[J]. 分子植物育种, 2018, 16(22):7550-7557.
|
[7] |
褚宏欣, 牟文燕, 党海燕, 等. 我国主要麦区小麦籽粒微量元素含量及营养评价[J]. 作物学报, 2022, 48(11):2853-2865.
小麦是重要的粮食作物, 其微量元素含量高低直接影响人体健康。明确我国主要麦区小麦籽粒微量元素含量水平, 对优化小麦微量元素营养品质, 保障居民营养健康有重要意义。于2016—2020年, 在我国17个小麦主产省区采集分析了1112份小麦及土壤样品, 参考《中国营养学会人体微量元素摄入标准》和美国环境保护署健康风险评估方法, 结合我国居民饮食特点, 推荐了小麦籽粒微量元素适宜含量范围, 并以此评价了我国小麦的微量元素营养状况。研究发现, 我国小麦籽粒铁含量平均为43.8 mg kg<sup>-1</sup>, 72.9%样本低于铁的推荐量下限50 mg kg<sup>-1</sup>, 所有样本铁含量均低于推荐量上限140 mg kg<sup>-1</sup>; 籽粒锰含量平均为43.0 mg kg<sup>-1</sup>, 仅4.1%样本低于推荐锰含量下限22 mg kg<sup>-1</sup>, 但23.7%样本高于推荐上限值50 mg kg<sup>-1</sup>; 籽粒铜含量平均为4.6 mg kg<sup>-1</sup>, 7.6%样本低于推荐量下限3 mg kg<sup>-1</sup>, 所有样本铜含量均低于推荐量上限10 mg kg<sup>-1</sup>; 籽粒锌含量平均为31.4 mg kg<sup>-1</sup>, 85.8%的样本低于推荐量下限40 mg kg<sup>-1</sup>, 仅4.1%样本高于50 mg kg<sup>-1</sup>的推荐量上限; 籽粒硼含量平均为1.2 mg kg<sup>-1</sup>, 低于推荐量下限0.8 mg kg<sup>-1</sup>的样本占29.2%, 所有样本均低于推荐值上限10 mg kg<sup>-1</sup>; 籽粒钼含量平均为0.5 mg kg<sup>-1</sup>, 18.8%的样本钼含量低于推荐量下限0.2 mg kg<sup>-1</sup>, 仅有0.4%样本钼含量高于推荐值上限2 mg kg<sup>-1</sup>。我国小麦籽粒微量元素含量也存在区域间变异, 其中, 铁、锌含量普遍偏低, 部分地区硼、钼含量不足, 而锰含量偏高, 铜含量基本在推荐范围内。
|
[8] |
Can commonly-eaten food staple crops be developed that fortify their seeds with essential minerals and vitamins? Can farmers be induced to grow such varieties? If so, would this result in a marked improvement in human nutrition at a lower cost than existing nutrition interventions? An interdisciplinary international effort is underway to breed for mineral- and vitamin-dense varieties of rice, wheat, maize, beans and cassava for release to farmers in developing countries. The biofortification strategy seeks to take advantage of the consistent daily consumption of large amounts of food staples by all family members, including women and children as they are most at risk for micronutrient malnutrition. As a consequence of the predominance of food staples in the diets of the poor, this strategy implicitly targets low-income households. After the one-time investment is made to develop seeds that fortify themselves, recurrent costs are low and germplasm may be shared internationally. It is this multiplier aspect of plant breeding across time and distance that makes it so cost-effective. Once in place, the biofortified crop system is highly sustainable. Nutritionally-improved varieties will continue to be grown and consumed year after year, even if government attention and international funding for micronutrient issues fades. Biofortification provides a truly feasible means of reaching malnourished populations in relatively remote rural areas, delivering naturally-fortified foods to population groups with limited access to commercially-marketed fortified foods that are more readily available in urban areas. Biofortification and commercial fortification are, therefore, highly complementary. Breeding for higher trace mineral density in seeds will not incur a yield penalty. Mineral-packed seeds sell themselves to farmers because, as recent research has shown, these trace minerals are essential in helping plants resist disease and other environmental stresses. More seedlings survive and initial growth is more rapid. Ultimately, yields are higher, particularly in trace mineral-'deficient' soils in arid regions.
|
[9] |
夏瑞雪, 魏帅, 郭波莉, 等. 豫北地区小麦籽粒矿质元素含量分析[J]. 核农学报, 2017, 31(3):516-523.
为了解豫北地区小麦籽粒中矿物元素的含量,指导小麦区域种植,本研究采集了河南安阳、鹤壁、新乡等3个地市9个粮食主产县区的81份小麦籽粒样品,并分析其钙、铁、锌、硒、铜、镁、钠、钾、铬等9种元素含量。结果表明,豫北地区小麦籽粒中铜、铬元素含量均符合国家相关标准要求,锌元素存在少量超标样品,被测元素除镁、铬元素可满足一般人群的每日摄入量外,其余元素均需通过食用其他食品补充人体矿质元素营养需求。豫北地区矿质元素呈不均一分布,鹤壁市淇滨区周边小麦籽粒中锌含量较高,新乡市市区周边的硒含量较高,铁元素含量较高地区为安阳市内黄县、滑县东部,硒元素含量较低地区为安阳市滑县、新乡市延津县。本研究结果为保障豫北地区消费者营养元素均衡摄取提供了数据参考。
|
[10] |
姜丽娜, 蒿宝珍, 张黛静, 等. 小麦籽粒Zn、Fe、Mn、Cu含量的基因型和环境差异及与产量关系的研究[J]. 中国生态农业学报, 2010, 18(5):982-987.
|
[11] |
Heavy metals are often present naturally in soils, but many human activities (e.g. mining, agriculture, sewage processing, the metal industry and automobiles) increase their prevalence in the environment resulting in concentrations that are toxic to animals and plants. Excess heavy metals affect plant physiology by inducing stress symptoms, but many plants have adapted to avoid the damaging effects of metal toxicity, using strategies such as metal chelation, transport and compartmentalization. Understanding the molecular basis of heavy metal tolerance in plants will facilitate the development of new strategies to create metal-tolerant crops, biofortified foods and plants suitable for the phytoremediation of contaminated sites.
|
[12] |
李俊成, 于慧, 杨素欣, 等. 植物对铁元素吸收的分子调控机制研究进展[J]. 植物生理学报, 2016, 52(6):835-842.
|
[13] |
张琨琨, 曹重阳, 孙帅, 等. 微量元素锰对小麦生长发育的影响研究进展[J]. 现代农业科技, 2016(22):11-12.
|
[14] |
祝沛平. 铜在植物生长发育中的作用[J]. 生物学通报, 2000(10):7.
|
[15] |
朱盼盼, 马彦平, 周忠雄, 等. 微量元素锌与植物营养和人体健康[J]. 肥料与健康, 2021, 48(5):16-18,23.
|
[16] |
Micronutrients are involved in all metabolic and cellular functions. Plants differ in their need for micronutrients, and we will focus here only on those elements that are generally accepted as essential for all higher plants: boron (B), chloride (Cl), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn). Several of these elements are redox-active that makes them essential as catalytically active cofactors in enzymes, others have enzyme-activating functions, and yet others fulfill a structural role in stabilizing proteins. In this review, we focus on the major functions of mineral micronutrients, mostly in cases where they were shown as constituents of proteins, making a selection and highlighting some functions in more detail.
|
[17] |
刘帅, 吴志超, 赵亚荣, 等. 外源硒对镉胁迫下菜心Fe、Mn、Cu、Zn吸收与转运的影响[J]. 农业环境科学学报, 2018, 37(3):431-439.
|
[18] |
|
[19] |
吕爱清, 罗天相, 刘沐生. 隐性饥饿的研究现状与应对策略[J]. 中国食物与营养, 2017, 23(6):5-8.
为了进一步系统研究隐性饥饿问题,对隐性饥饿的概念与危害及医学检验、食物强化、生物强化等方面的研究进展进行综述。提出面对隐性饥饿要强化系统理念,努力提高国家、地方和家庭经济水平,健全体检制度、丰富食物多样性、有针对性地开展食物强化与生物强化。
|
[20] |
卢士军, 黄家章, 吴鸣, 等. 营养导向型农业的概念、发展与启示[J]. 中国农业科学, 2019, 52(18):3083-3088.
为解决全球面临的诸多营养与农业问题,探求营养、健康与农业发展之间的关系,自2013年以来,营养导向型农业的概念体系逐步发展完善,其政策措施也为全球推进营养导向型农业战略起到了重要的示范和引领作用。2013年前后为概念产生阶段,2014—2018年为概念发展阶段。营养导向型农业主要包括以食物供给为导向和以食物系统为导向两条主线。2017年FAO提出,营养导向型农业是一种以可持续的方式来满足居民膳食需求的新型农业范式或方案,旨在确保生产量足质优且价格合理、营养丰富、文化适宜、安全的各种食物,营养和健康是营养导向型农业的最终目标和衡量标准。为了实现这个目标,必须关注整个食物系统。同时在中国发展营养导向型农业需要考虑中国农业发展面临的诸多问题,包括农业发展的主要矛盾已由过去的总量不足转变为结构性矛盾;农产品品质家底不清,缺少农产品营养品质基准数据,缺乏完善的农产品质量法规体系等。营养导向型农业给新时代中国农业发展带来的启示:一是应以食物营养为导向,提高农产品营养质量,满足消费者对食物营养和健康的新需要;二是应以营养品质作为标尺,建立国家农产品营养成分基准数据库,完善相关法律及新时代食物与营养发展纲要的修改和制定。
|
[21] |
青平, 曾晶, 李剑, 等. 中国作物营养强化的现状与展望[J]. 农业经济问题, 2019(8):83-93.
|
[22] |
田纪春, 胥倩. 功能性小麦品种的概念、类别和发展前景[J]. 粮油食品科技, 2021, 29(2):1-8.
|
[23] |
中共中央国务院. 《“健康中国 2030”规划纲要》[EB/OL].(2016-10-25)[2022-03-12]. http://www.gov.cn/zhengce/2016-10/25/content_5124174.htm.
|
[24] |
郭军玲, 吴士文, 金辉, 等. 农田土壤微量元素含量的空间变异特征和影响因素[J]. 水土保持学报, 2010, 24(1):145-149,158.
|
[25] |
张智, 任意, 鲁剑巍, 等. 长江中游农田土壤微量养分空间分布特征[J]. 土壤学报, 2016, 53(6):1489-1496.
|
[26] |
刘洋, 李廷亮, 栗丽, 等. 山西省3种典型作物主产区土壤微量元素特征分析[J]. 灌溉排水学报, 2023, 42(3):40-47.
|
[27] |
江叶枫, 钟珊, 饶磊, 等. 江西省耕地土壤有效态微量元素含量空间变异特征及其影响因素[J]. 长江流域资源与环境, 2018, 27(5):1159-1169.
|
[28] |
|
[29] |
|
[30] |
姜丽娜, 蒿宝珍, 侯飞, 等. 小麦籽粒灌浆期铁、锌、锰、铜积累动态的研究[J]. 麦类作物学报, 2008(2):301-306.
|
[31] |
李亚辉, 高庆超, 潘超, 等. 矿质元素对稻米品质影响研究进展[J]. 中国稻米, 2022, 28(2):24-31.
水稻是世界上重要的粮食作物,稻米品质是水稻遗传特性与生长环境、栽培技术互作的结果,矿质元素对稻米品质的形成具有重要作用。本文综述了不同矿质元素对稻米品质的影响,分别总结了大量元素、中量元素和微量元素对稻米品质的不同影响。受多种因素影响,同一矿质元素对稻米品质影响的研究结果不尽相同;矿质元素对稻米品质的影响存在品种间和不同稻米品质间差异,而且在稻米品质形成过程中,不同矿质元素起的作用及作用程度也不尽相同;矿质元素对稻米品质的影响具有多向性,且不同矿质元素间存在一定的互作关系,施用中很难兼顾到稻米品质的每一个指标。生产中应根据实际情况,因地制宜、适时适量、合理运筹,最大程度提高稻米的整体品质。
|
[32] |
张艳, 胡亚鲜, 郭胜利. 长期施用微肥条件下微量元素和有机官能团在团聚体中的积累特征[J]. 土壤学报, 2022, 59(5):1420-1431.
|
[33] |
|
[34] |
李裕, 张强, 王润元, 等. 气候变暖对春小麦籽粒痕量元素利用率的影响[J]. 农业工程学报, 2011, 27(12):96-104.
|
[35] |
贝凯月, 向春阳, 赵秋, 等. 绿肥翻压对土壤微量元素含量及玉米吸收的影响[J]. 玉米科学, 2023, 31(1):143-152.
|
[36] |
常旭虹, 赵广才, 王德梅, 等. 生态环境与施氮量协同对小麦籽粒微量元素含量的影响[J]. 植物营养与肥料学报, 2014, 20(4):885-895.
|
[37] |
王擎运, 张佳宝, 赵炳梓, 等. 不同施肥方式对典型壤质潮土中微量元素积累及其有效性的影响[J]. 土壤学报, 2012, 49(6):1104-1113.
|
[38] |
党红凯, 李瑞奇, 李雁鸣, 等. 超高产冬小麦四种微量元素的积累及其与产量性状的关系[J]. 麦类作物学报, 2012, 32(2):326-332.
|
[39] |
黄玉芳, 叶优良, 赵亚南, 等. 施氮量对豫北冬小麦产量及子粒主要矿质元素含量的影响[J]. 作物杂志, 2019(5):104-108.
|
[40] |
杨莉琳, 刘小京, 徐进, 等. 小麦籽粒微量元素含量的研究进展[J]. 麦类作物学报, 2008, 28(6):1113-1117.
|
[41] |
刘娜, 余鹏, 王超, 等. 去叶片和去小穗对小麦籽粒微量元素和蛋白质含量的影响[J]. 中国农业大学学报, 2013, 18(6):42-53.
|
[42] |
许亚芳, 王云, 任帅帅, 等. 微量元素喷施对冬小麦籽粒产量和品质的影响[J]. 中国农学通报, 2021, 37(12):10-17.
通过对不同生育期小麦叶面喷施不同浓度微量元素,探究冬小麦对微量元素的吸收和利用。采用大田试验,设置1倍(B1)、50倍(B2)、100倍(B3)和500倍(B4)四个浓度处理(等量水为对照),喷施时期为苗期(A1)、苗期+拔节期(A2)、苗期+拔节期+扬花期(A3)、拔节期(A4)、拔节期+扬花期(A5)和扬花期(A6),测定成熟期产量及籽粒微量元素含量。不同处理下产量变化范围为3741~6204 kg/hm<sup>2</sup>,A4B4处理下产量最优,相对于对照产量增加了39.52%。锌(Zn)变化范围为31.07~44.68 mg/kg,A3B1处理下Zn含量最高。铜(Cu)变化范围为1.75~28.67 mg/kg,A1B1处理下Cu含量最高。铁(Fe)变化范围为73.62~203.99 mg/kg,A3B1处理下Fe含量最高。锰(Mn)变化范围为36.48~55.56 mg/kg,A6B4处理下Mn含量最高。相对于对照,Zn、Cu、Fe、Mn含量分别提高了37.86%、1650%、148%和26.82%。拔节期喷施高浓度微量元素对增产最有利,不同喷施时期和喷施浓度影响微量元素的利用效率。
|
/
〈 |
|
〉 |