Determination of Six Types of Phenoxy Acid Herbicides in Water by Gas Chromatography-Mass Spectrometry with Liquid-Liquid Extraction and Derivatization

WANGYuanyuan, LIANGJing, WANGLingling, LAIXiaoshan

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (11) : 159-164.

PDF(1301 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1301 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (11) : 159-164. DOI: 10.11924/j.issn.1000-6850.casb2024-0737

Determination of Six Types of Phenoxy Acid Herbicides in Water by Gas Chromatography-Mass Spectrometry with Liquid-Liquid Extraction and Derivatization

Author information +
History +

Abstract

A method for determination of 6 phenoxy acid herbicides in water by gas chromatography-mass spectrometry was established. After liquid-liquid extraction with dichloromethane, the extract was dehydrated and concentrated, then derivatized with PFBBR under the catalysis of potassium carbonate. The derivatives were analyzed by gas chromatography-mass spectrometry. Samples were separated by Rtx-5ms capillary chromatography column, detected by SIM mode, and quantified by internal standard. The results showed that under the optimal experimental conditions, 6 phenoxy acid herbicides showed good linear relationships in the concentration range of 0.5 to 20.0 μg/mL, the correlation coefficient was not less than 0.999. The detection limit was 0.2 μg/L, and the precision range was 2.2%-6.9%. The spiked tests were conducted on groundwater, surface water, seawater, domestic sewage, and industrial wastewater samples, and the recovery range was 83.0%-113%. Results showed that this method had good precision and stable recovery, providing an effective solution for the detection of phenoxy acid herbicides in water.

Key words

liquid-liquid extraction / derivatization / gas chromatography-mass spectrometry / phenoxy acid herbicides / analysis method

Cite this article

Download Citations
WANG Yuanyuan , LIANG Jing , WANG Lingling , et al. Determination of Six Types of Phenoxy Acid Herbicides in Water by Gas Chromatography-Mass Spectrometry with Liquid-Liquid Extraction and Derivatization[J]. Chinese Agricultural Science Bulletin. 2025, 41(11): 159-164 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0737

References

[1]
杨峰山, 孙丛, 鲍霞霞, 等. 5类化学除草剂在作物中残留分析的研究进展[J]. 中国农学通报, 2021, 37(10):136-141.
为解决化学除草剂在作物中的残留的药害问题,本研究综述了酰胺类、磺酰脲类、三氮苯类、苯氧羧酸类和联吡啶类5类化学除草剂在作物中的残留分析,从酰胺类除草剂和磺酰脲类除草剂施用的常见作物进行残留检测分析,从三氮苯类除草剂、苯氧羧酸类除草剂和联吡啶类除草剂中各自选取一种代表性的除草剂,论述其在作物中的残留情况,归纳总结出化学除草剂残留对作物的药害情况,今后可以采用新的检测技术-酶联免疫吸附分析(ELISA)来提高除草剂残留检测的灵敏度和时效性,加强对农民合理用药的培训指导工作和对除草剂的监管力度,加大开发对长残留除草剂替代品的步伐。
[2]
魏茂琼, 林昕, 杨娟, 等. 苯氧羧酸类除草剂残留检测技术的研究进展[J]. 食品安全质量检测学报, 2019, 10(10):2896-2902.
[3]
张远芳, 江涛, 万建春. 液相色谱-质谱/质谱法测定植物源性食品中2,4-D残留量[J]. 江西化工, 2023, 39(6):28-31,36.
[4]
黄幼芳, 刘珺, 黄晓佳. “一锅法”制备氨基碳纳米管功能化磁性纳米粒子及其在谷物和蔬菜中苯氧羧酸类除草剂测定中的应用[J]. 色谱, 2022, 40(10):900-909.
有效萃取是分析复杂样品中苯氧羧酸类除草剂(PAs)残留的关键步骤。为此,该文利用&#x0201c;一锅法&#x0201d;水热技术快速、简便地制备了氨基碳纳米管功能化磁性纳米粒子(NH<sub>2</sub>-CNTs@M)并作为磁固相萃取(MSPE)的萃取介质,用于萃取谷物和蔬菜样品中痕量PAs。研究利用多种手段对NH<sub>2</sub>-CNTs@M的形貌、尺寸、磁性性质等进行了表征,结果表明Fe<sub>3</sub>O<sub>4</sub>的粒径、氨基化碳纳米管的直径以及NH<sub>2</sub>-CNTs@M的磁饱和值分别为30 nm、40 nm和44.2 emu/g。详细考察了制备条件和萃取参数对NH<sub>2</sub>-CNTs@M/MSPE萃取性能的影响,结果表明,NH<sub>2</sub>-CNTs@M/MSPE可通过&#x003c0;-&#x003c0;、疏水和氢键作用有效富集目标化合物,最佳萃取条件如下:吸附剂用量为30 mg,解吸溶剂为含2.0%(v/v)甲酸的乙腈溶液,吸附时间和解吸时间分别为8.0 min和3.0 min,基底pH值为6.0,不调节基底的离子强度。将NH<sub>2</sub>-CNTs@M/MSPE与高效液相色谱-二极管阵列检测技术(HPLC-DAD)联用,建立了谷物和蔬菜中PAs的灵敏检测方法。谷物和蔬菜基质中苯氧羧酸类除草剂的检出限(LOD, S/N=3)分别为0.32~1.6 &#x003bc;g/kg和0.53~1.6 &#x003bc;g/kg,定量限(LOQ, S/N=10)分别为0.94~4.8 &#x003bc;g/kg和1.6~4.8 &#x003bc;g/kg。在两种实际样品中不同浓度下的加标回收率分别为73.1%~112%和72.3%~113%。与现有方法相比,所建方法具有萃取速度快、灵敏度高和环境友好等特点。
[5]
艾小红, 刘文峰, 秦冬冬, 等. LC-MS/MS法测定2,4-D在土壤中的残留研究[J]. 广州化工, 2023, 51(23):57-61.
[6]
THIERRY L, MARIO D G, YU S L, et al. Herbicides that inhibit acetolactate synthase[J]. Frontiers of Agricultural Science and Engineering, 2022, 9(1):155-160.
[7]
段星春, 刘永志, 巫培山, 等. 离子色谱法测定饮用水及水源水中2,4-D、灭草松的探讨[J]. 四川环境, 2020, 39(5):15-18.
[8]
张鑫, 吴阁格, 崔文连, 等. 基于金属有机骨架材料复合气凝胶的分散固相萃取-超高效液相色谱-串联质谱法测定水中7种苯氧羧酸类除草剂[J]. 色谱, 2024, 42(11):1042-1051.
苯氧羧酸类除草剂(PCAs)在水体中难以降解,对人类健康和生态环境造成严重威胁,因此亟需建立有效测定水体中痕量PCAs的方法。本文以常温干燥法制备的金属有机骨架/海藻酸钠气凝胶材料MIL-101(Fe)-NH<sub>2</sub>/SA作为分散固相萃取的吸附剂,对环境水体中的7种PCAs进行吸附和富集,从萃取条件(气凝胶中MIL-101(Fe)-NH<sub>2</sub>与海藻酸钠比例、水样pH、萃取时间)、洗脱条件(洗脱溶剂比例、洗脱时间、洗脱体积)、离子强度(盐度)等方面对萃取效果进行优化,以获得最佳的萃取效果。优化结果显示,吸附剂在12 min内可以对目标物进行完全吸附,用总体积为4 mL的含1.5%甲酸的甲醇洗脱30 s,目标物可以充分解吸。在最优条件下,结合超高效液相色谱-串联质谱法(UHPLC-MS/MS),建立了基于金属有机骨架复合气凝胶测定水体中7种PCAs的新方法。该方法可以呈现良好的线性关系(r<sup>2</sup>≥0.9986),检出限和定量限分别为0.30~1.52 ng/L和1.00~5.00 ng/L。在低(8 ng/L)、中(80 ng/L)、高(800 ng/L)3个水平下进行精密度试验,日内和日间精密度(以RSD计)分别为6.5%~17.1%和7.4%~19.4%。该方法应用于地表水、海水、垃圾渗滤液的检测中,检出量为0.6~19.3 ng/L;在8、80、800 ng/L3个水平下进行加标回收试验,回收率为61.7%~120.3%。该方法具有良好的灵敏度、精密度和准确度,为环境水体中苯氧羧酸类物质的痕量检测提供了一种新的检测方法。
[9]
张蓓蓓, 章勇, 赵永刚, 等. 水中苯氧羧酸类除草剂的液相色谱-串联质谱测定方法研究[J]. 分析测试学报, 2013, 32(1):89-93.
[10]
王枭鹏, 许诗尧. 分散固相萃取-三重四极杆气相色谱质谱联用法测定糙米、小麦和玉米中2,4-滴丁酯残留[J]. 食品安全导刊, 2024,(14):96-100,105.
[11]
杨峰山, 高梦颖, 孙丛, 等. 4类除草剂对土壤酶活性的影响研究进展[J]. 中国农学通报, 2021, 37(8):97-102.
旨在阐述除草剂对土壤环境的影响,以期为科学有效地使用除草剂并减轻其对环境的危害,以及为农业生产提供理论依据。分析了施用氯乙酰苯胺类、苯氧乙酸类、二苯醚类以及二硝基苯胺类除草剂的使用情况以及危害,总结了4类除草剂对土壤酶活性的影响,最后提出了关于除草剂降解需要解决的问题并对未来修复除草剂污染的土壤研究趋势进行了展望。
[12]
亢卫华, 杨迪, 王昕, 等. 固相萃取-高效液相色谱法同时检测饮用水中MC-LR、灭草松和2,4-D[J]. 山西大同大学学报(自然科学版), 2022, 38(6):18-22.
[13]
李健平, 王晓婧, 王缘, 等. HPLC-MS-MS法和IC法测定水中2,4-D、草甘膦、灭草松含量的对比研究[J]. 中国公共卫生管理, 2021, 37(5):641-643.
[14]
王沛, 易卫红, 晏喜云. 全自动固相萃取-高效液相色谱法同时测定水中灭草松、2,4-滴和阿特拉津[J]. 供水技术, 2023, 17(4):51-54.
[15]
张文锦, 李志华, 陈晓琴, 等. 气相色谱联合三重四级杆串联质谱法检测地表水中苯达松、乙草胺、异丙隆等7种常用除草剂残留[J]. 中国测试, 2022, 48(10):36-40.
[16]
石盼盼. 衍生化-气相色谱质谱法测定水中2,4-D和灭草松[J]. 山东化工, 2024, 53(3):164-168.
[17]
梁娜, 王静, 李强, 等. 高效液相色谱法测定水中7种苯氧羧酸类除草剂[J]. 应用化工, 2022, 51(S2):304-307.
[18]
ALESSANDRA B, MARIA A M, SEBASTIAN B, et al. Retention modelling of phenoxy acid herbicides in reversed-phase HPLC under gradient elution[J]. Molecules, 2020, 25(6):1262-1276.
[19]
王丹君, 易建希, 颜茜煜. UHPLC-MS/MS法测定耕地周围地表水中5种除草剂含量[J]. 化学研究与应用, 2024, 36(1):191-196.
[20]
段立红, 王秀芝, 齐翠翠. 超高效液相色谱质谱联用法测定水中2,4-滴、莠去津、呋喃丹和甲萘威[J]. 质量安全与检验检测, 2022, 32(1):39-44.
[21]
关小桃, 吴艳龙. 高效液相色谱串联质谱测定生活饮用水和地表水中2,4-滴、灭草松和莠去津[J]. 广州化工, 2021, 49(8):121-123.
[22]
郑磊, 李宏亮, 闵巍, 等. 在线固相萃取-超高效液相色谱-串联质谱测定饮用水中2,4-滴和灭草松[J]. 实用预防医学, 2022, 29(3):303-306.
[23]
张莉, 张永涛, 桂建业, 等. 水中氯代酸性除草剂衍生气相色谱法主要要素探讨[J]. 中国环境监测, 2011, 27(4):45-49.
[24]
陈晨, 王艳丽, 崔连喜, 等. 两种测定水中2,4-滴分析方法的比较[J]. 山东化工, 2021, 50(11):83-85.
[25]
DING W H, LIU C H, YEH S P. Analysis of chlorophenoxy acid herbicides in water by large-volume on-line derivatization and gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2000, 896(1-2):111-116.
This work presents a modified method to analyze chlorophenoxy acid herbicides in water samples. The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid). Silvex (2,4,5-trichlorophenoxypropionic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used to evaluate the method. The method involves extraction of samples by a graphitized carbon black cartridge, and on-line derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium salts. The analytes were then identified and quantitated by ion-trap gas chromatography-mass spectrometry. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for chlorophenoxy acid herbicides residues, to quantitation at 0.1 to 0.2 microg/l in 500-ml water samples. An enhanced characteristic mass chromatogram of molecular ions of butylated chlorophenoxy acid herbicides with a significant chlorine isotope pattern by electron impact ionization MS allows us to determine herbicides residues at trace levels in aqueous samples. Recovery of the herbicide residues in spiked various water samples ranged from 70 to 99% while RSDs ranged from 1 to 13%.
[26]
张念华, 王军淋, 冯靓, 等. 全自动固相萃取-气相色谱-质谱法测定水中6种苯氧羧酸类除草剂[J]. 中国卫生检验杂志, 2021, 31(1):24-27.
PDF(1301 KB)

Accesses

Citation

Detail

Sections
Recommended

/