Research Progress on Organ Variation in Rosa chinensis

LIAOHui, ZHANGJinfeng, ZHANGHua, ZHANGXixi, SONGLina, ZHANGHuali, SHUJianhua

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (19) : 49-55.

PDF(1568 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1568 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (19) : 49-55. DOI: 10.11924/j.issn.1000-6850.casb2024-0744

Research Progress on Organ Variation in Rosa chinensis

Author information +
History +

Abstract

The novelty of floral organ morphology serves as one of the critical indicators for the ornamental value of flowering plants. This article summarized the influences of relevant floral developmental genes, temperature, hormones, and other external factors on the floral organ variation of Rosa chinensis ‘Viridiflora’. Analysis indicated that the formation of unique floral organ traits in R. chinensis ‘Viridiflora’ was associated with the inherent characteristics of floral organs, external factors, and molecular mechanisms. Finally, suggestions were made for future research directions. (1) Conducting physiological and anatomical studies on the leaf-like structures of R. chinensis ‘Viridiflora’ to determine their evolutionary orientation. (2) Performing functional verification of the screened related genes to determine whether this gene can cause flower type variation. (3) Constructing interaction network diagrams illustrating relationships between genes. (4) Utilizing rose plant regeneration and genetic transformation systems to cultivate novel floral cultivars.

Key words

Rosa chinensis / Rosa chinensis ‘Viridiflora’ / flower organ development / flower type / molecular mechanisms / physiology and biochemistry / breeding / research progress

Cite this article

Download Citations
LIAO Hui , ZHANG Jinfeng , ZHANG Hua , et al . Research Progress on Organ Variation in Rosa chinensis[J]. Chinese Agricultural Science Bulletin. 2025, 41(19): 49-55 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0744

References

[1]
张佐双, 许桂花. 花中的皇后——月季[J]. 园林, 2007,10:14-15.
[2]
徐怀德. 花卉食品[M]. 北京: 中国轻工业出版社, 2000:118-230.
[3]
闻子良. 花卉栽培与药用[M]. 北京: 中国农业科技出版社, 2003:324-328.
[4]
王琛瑶. 中国古代传统月季文化与玫瑰文化考[D]. 北京: 北京林业大学, 2021.
[5]
黄承丽. 月季花卉的发展研究探讨[J]. 现代园艺, 2013(20):24-25.
[6]
金银根. 植物学[M]. 北京: 科学出版社, 2017:191-223.
[7]
宋杨, 窦连登, 张红军. 高等植物成花诱导调控的分子和遗传机制[J]. 植物生理学, 2014, 50(10):1459-1468.
[8]
KOORNNEEF M, ALONSO-BLANCO C, PEETERS A J M, et al. Genetic control of flowering time in Arabidopsis[J]. Annual review of plant physiology and plant molecular biology, 1998, 49:345-370.
[9]
MENDOZA L, ALVAREZ-BUYLL A E R. Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis[J]. Journal of theoretical biology, 1998, 193:307-319.
[10]
李宪利, 袁志友, 高东升. 高等植物成花分子机理研究现状及展望[J]. 西北植物学报, 2002(1):173-183.
[11]
COEN E S, MEYEROWITZ E M. The war of the whorls: Genetic interactions controlling flower development[J]. Nature, 1991, 353:31-37.
[12]
MA H, DE PAMPHILIS C. The ABCs of floral evolution[J]. Cell, 2000, 101(1):5-8.
[13]
李洪有, 王婵, 李丽林. 等. 单子叶植物花器官发育的分子机制及修正的ABC模型[J]. 中国细胞生物学学报, 2013, 35(4):526-535.
[14]
KRIZEK B A, MEYEROWITZ E M. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function[J]. Development, 1996, 122(1):11-22.
[15]
PELAZ S, TAPIA-LÓPEZ R, ALVAREZ-BUYLLA E R, et al. Conversion of leaves into petals in Arabidopsis[J]. Current biology, 2001, 11(3):182-184.
[16]
COLOMBO L, FRANKEN J, KOETJE E, et al. The petunia MADS box gene FBP11 determines ovule identity[J]. The plant cell, 1995, 7(11):1859-1868.
[17]
FERRARIO S, IMMINK R G, SHCHENNIKOVA A, et al. The MADS box gene FBP2 is required for SEPALLATA function in Petunia[J]. The plant cell, 2003, 15(4):914-925.
[18]
PINYOPICH A, DITTA G S, SAVIDGE B, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development[J]. Nature, 2003, 424:85-88.
[19]
MANDEL M A, YANOFSKY M F. The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia[J]. Sexual plant reproduction, 1998, 11:22-28.
[20]
PELAZ S, DITTA G S, BAUMANN E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405:200-203.
[21]
DITTA G, PINYOPICH A, ROBLES P, et al. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity[J]. Current biology, 2004, 14(21):1935-1940.
[22]
王凯璇. ‘卡罗拉’月季花器官发育相关基因RhSEP3的克隆与功能探究[D]. 郑州: 河南农业大学, 2023.
[23]
CASTILLEJO C, ROMERA-BRANCHAT M, PELAZ S. A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression[J]. The plant journal, 2005, 43(4):586-596.
[24]
FAVARO R, PINYOPICH A, BATTAGLIA R, et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis[J]. The plant cell, 2003, 15(11):2603-2611.
[25]
AMPOMAH-DWAMENA C, MORRIS B A, SUTHERLAND P, et al. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion[J]. Plant physiology, 2002, 130(2):605-617.
[26]
ZHANG J, HU Z, WANG Y, et al. Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals[J]. Plant science, 2018, 272:75-87.
[27]
VANDENBUSSCHE M, THEISSEN G E, VAN DE PEER Y, et al. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations[J]. Nucleic acids research, 2003, 31(15):4401-4409.
Frameshift mutations generally result in loss-of-function changes since they drastically alter the protein sequence downstream of the frameshift site, besides creating premature stop codons. Here we present data suggesting that frameshift mutations in the C-terminal domain of specific ancestral MADS-box genes may have contributed to the structural and functional divergence of the MADS-box gene family. We have identified putative frameshift mutations in the conserved C-terminal motifs of the B-function DEF/AP3 subfamily, the A-function SQUA/AP1 subfamily and the E-function AGL2 subfamily, which are all involved in the specification of organ identity during flower development. The newly evolved C-terminal motifs are highly conserved, suggesting a de novo generation of functionality. Interestingly, since the new C-terminal motifs in the A- and B-function subfamilies are only found in higher eudicotyledonous flowering plants, the emergence of these two C-terminal changes coincides with the origin of a highly standardized floral structure. We speculate that the frameshift mutations described here are examples of co-evolution of the different components of a single transcription factor complex. 3' terminal frameshift mutations might provide an important but so far unrecognized mechanism to generate novel functional C-terminal motifs instrumental to the functional diversification of transcription factor families.
[28]
BREWER P B, HOWLES P A, DORIAN K, et al. PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower[J]. Development, 2004, 131:4035-4045.
[29]
TAKEDA S, MATSUMOTO N, OKADA K. RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana[J]. Development, 2004, 131:425-434.
[30]
SOLTIS P S, SOLTIS D E, KIM S, et al. Expression of floral regulators in basal angiosperms and the origin and evolution of ABC-function[J]. Advances in botanical research, 2006,44:483-506.
[31]
杜朝金, 张汉尧, 罗心平, 等. 基因调控植物花器官发育的研究进展[J]. 植物遗传资源学报, 2024, 25(2):151-161.
[32]
HONMA T, GOTO K. Complexes of MADS-box proteins are sufficient to convert leaves intofloral organs[J]. Nature. 2001. 409:525-529.
[33]
THEIßEN G, MELZER R, RÜMPLER F. MADS-domain transcription factors and the floral quartet model of flower development: Linking plant development and evolution[J]. Development, 2016, 143(18):3259
The floral quartet model of floral organ specification poses that different tetramers of MIKC-type MADS-domain transcription factors control gene expression and hence the identity of floral organs during development. Here, we provide a brief history of the floral quartet model and review several lines of recent evidence that support the model. We also describe how the model has been used in contemporary developmental and evolutionary biology to shed light on enigmatic topics such as the origin of land and flowering plants. Finally, we suggest a novel hypothesis describing how floral quartet-like complexes may interact with chromatin during target gene activation and repression.© 2016. Published by The Company of Biologists Ltd.
[34]
刘宁, 刘建武, 吴杰. 歌德与生物学[J]. 生物学通报, 2005(10):55.
[35]
胡世晨. 月季花上开花成因初探[J]. 生物学杂志, 1984(2):40-42.
[36]
李菁博, 许桂花. 试揭开月季“花变叶”之谜[J]. 中国花卉盆景, 2010(6):23.
[37]
MASTERS M T. Vegetable teratology: an account of the principal deviations from the usual construction of plants[M]. Kingdom of Scotland: Good Press, 2019.
[38]
李菁博, 许桂花. 月季变叶病研究进展及发生情况初步调查[A]. //中国植物学会. 2010年中国植物园学术年会论文集[C]. 厦门, 2010:210-213.
[39]
石力匀, 王政, 李明霞, 等. 切花月季生理病害及相关性状分子研究进展[J]. 河南农业科学, 2018, 47(10):1-6.
以切花月季常见的生理性病害为主线,综述了导致生理性病害产生的温度、水分等环境诱因,相应的赤霉素、细胞分裂素、生长素等内源激素的生理性变化,花器官模型中相关功能基因的异常表达。分析了不适宜的温度环境与内源激素变化之间的关系,并结合月季花器官发育的研究现状,探析花器官特性基因在生理性病害形成中的作用机制,为减少切花月季生理性病害及提高其生产和观赏品质提供理论依据。
[40]
丁正明. 月季绿瓣病[J]. 上海师范学院学报, 1983, 1:90-97.
[41]
SIM S, ROWHANI A, GOLINO D. Phyllody in roses[J]. American Rose, 2004, 39(18):32-34.
[42]
YAN H, ZHANG H, QIU X, et al. The Rosa chinensis cv. Viridiflora phyllody phenotype is associated with misexpression of flower organ identity genes[J]. Frontiers in plant science, 2016(7):638.
[43]
CHMELNITSKY I, KHAYAT E, ZIESLIN N. Involvement of RAG, a rose homologue of AGAMOUS, in phyllody development of Rosa hybrida cv. Motrea[J]. Plant growth regulation, 2003, 39(1):63-66.
[44]
高志红, 张玉明, 王珊, 等. 植物花发育调控基因AGAMOUS的研究进展[J]. 西北植物学报, 2008, 28(3):638-644.
[45]
李蓉, 眭梦洁, 王其刚, 等. 月季品种绿萼‘RcAG’基因启动子克隆及分析[J]. 植物科学学报, 2021, 39(4):407-414.
[46]
GALIMBA K D, TOLKIN T R, SULLIVAN A, et al. Loss of deeply conserved C-class floral homeotic gene function and C-and E-class protein interaction in a double-flowered ranunculid mutant[J]. Proceedings of the national academy of sciences, 2012, 109(34):E2267-E2275.
[47]
HAN Y, TANG A, YU J, et al. RcAP1, a homolog of APETALA1, is associated with flower bud differentiation and floral organ morphogenesis in Rosa chinensis[J]. International journal of molecular sciences, 2019, 20(14):3557.
[48]
KAPOOR M, TSUDA S, TANAKA Y, et al. Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function[J]. The plant journal, 2002, 32(1):115-127.
[49]
FERRARIO S, BUSSCHER J, FRANKEN J, et al. Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner[J]. The plant cell, 2004, 16(6):1490-1505.
[50]
RUOKOLAINEN S, NG Y P, ALBERT V A, et al. Over-expression of the Gerbera hybrida At-SOC1-like gene Gh-SOC1 leads to floral organ identity deterioration[J]. Annals of botany, 2011, 107(9):1491-1499.
[51]
MATSUMOTO S, KITAHARA K. MADS-box genes in rose: Expression analyses of AGAMOUS, PISTILLATA, APETALA3 and SEPALLATA homologue genes in the green rose[J]. Acta horticulturae, 2005, 690:203-210.
[52]
DUBOIS A, CARRERE S, RAYMOND O, et al. Transcriptome database resource and gene expression atlas for the rose[J]. BMC Genomics, 2012, 13:638.
[53]
GION K, SUZURI R, ISHIGURO K, et al. Genetic engineering of floricultual crops: Modification of flower colour, flowering and shape[J]. Acta horticulturae, 2012, 953:209-216.
[54]
任浩然, 傅晓东, 支秋娟, 等. 月季生长素结合蛋白基因RcABP19的克隆及表达特征分析[J]. 植物生理学报, 2019, 55(7):983-992.
[55]
李蓉. 月季组蛋白去甲基化酶RcJMJ12RcJMJ36在花器官发育中的功能解析[D]. 昆明: 云南大学, 2022.
[56]
韩凯. 表观修饰因子JMJ28DRM3响应低温调节月季花器官发育的机制解析[D]. 长春: 吉林农业大学, 2018.
[57]
LIU J, FU X, DONG Y, et al. MIKCC-type MADS-box genes in Rosa chinensis: The remarkable expansion of ABCDE model genes and their roles in floral organogenesis[J]. Horticulture research, 2018, 5(1):25.
[58]
冯叶. 月季花发育相关基因RhFUL的克隆与功能验证[D]. 郑州: 河南农业大学, 2024.
[59]
眭梦洁, 晏慧君, 王珍珍, 等. 月季‘绿萼’花器官发育相关microRNA的鉴定及分析[J]. 植物科学学报, 2019, 37(1):37-46.
[60]
陈雯, 周颖盈, 罗平, 等. 被子植物花朵重瓣化分子调控机制[J]. 植物学报, 2024, 59(2):257-277.
重瓣花表现为花瓣数目增加、花瓣褶皱或面积增大, 具有较高的观赏价值和经济价值。该文针对重瓣性状中花瓣或花瓣类似器官数目增多的特点, 综述了模式植物和观赏植物中重瓣花形成的分子机理, 包括参与花瓣数量调控的重要转录因子, 以及miRNAs、DNA甲基化、组蛋白修饰和染色质重塑等表观遗传调控方式, 并在此基础上展望未来的研究方向。
[61]
LI K, LI Y, WANG Y, et al. Disruption of transcription factor RhMYB123 causes the transformation of stamen to malformed petal in rose (Rosa hybrida)[J]. Plant cell reports, 2022, 41(12):2293-2303.
[62]
夏广亮, 张权, 马志红. 高温胁迫对植物花器官发育和生殖过程的影响[J]. 现代农业科技, 2012(6):284-285.
[63]
毕愿坤, 李丽, 朱传应, 等. 生境、温度及外源激素对花花柴花器官发育的影响[J]. 生物技术通报, 2021, 37(4):28-34.
植物花器官的生长发育与温度密切相关,高温会导致花器官畸形及体内激素含量的变化。为探究不同生境配合外施生长素(IAA)对花花柴(Karelinia caspia)花器官发育的影响,测定沙漠和人工绿地2种环境下及外施不同浓度生长素(IAA)的花花柴花器官大小(雌花花柱、雄花花丝)及花器官内激素含量的变化。结果表明,在花苞期合适的温度(27-30℃)能够促进花花柴花器官的生长,而在开花过程中,高温(38-40℃)可促进花花柴柱头伸长进而影响花器官生长,直至发育成熟。外施一定浓度的IAA对花花柴花器官的生长具有促进作用,沙漠环境中,外施0.3 μmol/L的IAA促进作用最明显而人工绿地则为0.1 μmol/L。
[64]
CHMELNITSKY I. Effects of temperature on phyllody expression and cytokinin content in floral organs of rose flowers[J]. Plant growth regulation, 2001:207-214.
[65]
CHMELNITSKY I, AZIZBEKOVA N, KHAYAT E, et al. Morphological development of normal and phyllody expressing Rosa hybrida cv. Motrea flowers[J]. Plant growth regulation, 2002, 37(3):215-221.
[66]
JING W, ZHANG S, ZHAO Q, et al. The MADS-box gene RhAGL6 plays a master role in regulating the receptacle malformation in rose at low temperature[J]. Horticultural plant journal, 2024, 10(5):1214-1229.
[67]
BOND T. On sepal phyllody in roses and some related phenomena experimental data and a quantitative interpretation[J]. New phytologist, 1945, 44(2):220-230.
[68]
COOK O F. Metaphanic variations in rose sepals[J]. Journal of heredity, 1926, 17(11):413-426.
[69]
MOR Y, ZIESLIN N. Phyllody malformation in flowers of Rosa× hybrida cv. Motrea: Effects of rootstocks, flower position, growth regulators and season[J]. Journal of experimental botany, 1992, 43(1):89-93.
[70]
程敏, 闫淑君, 吕蔚, 等. 海拔对植物花部性状影响的研究进展[J]. 世界林业研究, 2024, 37(5):16-21.
[71]
夏萌, 左悠, 杨碧楠, 等. 60Co-γ射线辐照对月季“蜻蜓”的诱变效应及突变体ISSR分析[J]. 上海师范大学学报(自然科学版), 2023, 52(4):443-452.
[72]
陈艳. 我国观赏植物花型基因研究进展[J]. 安徽农学通报, 2018, 24(6):43-45.
PDF(1568 KB)

Accesses

Citation

Detail

Sections
Recommended

/