Effect of Bio-organic Fertilizer on Growth Trait of Millet

WUSuxia, ZHAOPeng, FANHairong, SONGShitao, CHENLina, JINChangmin, CUIYue

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (8) : 19-24.

PDF(1159 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1159 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (8) : 19-24. DOI: 10.11924/j.issn.1000-6850.casb2024-0763

Effect of Bio-organic Fertilizer on Growth Trait of Millet

Author information +
History +

Abstract

To study the application effect of bio-organic fertilizer in millet planting, and obtain the best bio-organic fertilizer application rate for planting millet in Hebei area, the field experiment of ‘Jigu 35’ was carried out from June 2023 to September 2023, and six treatments were set as followed: no fertilization (DCK1), pure chemical fertilizer (DCK2), 2250 kg/hm2 bio-organic fertilizer (D1), 4500 kg/hm2 bio-organic fertilizer (D2), 6750 kg/hm2 bio-organic fertilizer (D3), 9000 kg/hm2 bio-organic fertilizer (D4). The effects of different application rates of bio-organic fertilizer on plant height, stem diameter, leaf area, SPAD value, aboveground biomass and underground biomass of millet were analyzed. The results showed that the application of bio-organic fertilizer had a significant positive effect on the growth traits of millet, and the effects of different application amounts on the growth of millet were different. Among them, D3 and D4 treatments had better effects. However, from the perspective of saving resources, it was recommended to choose D3 treatment as the optimal application amount of bio-organic fertilizer for planting millet, which was 6750 kg/hm2 of bio-organic fertilizer, so as to achieve the purpose of replacing chemical fertilizer with bio-organic fertilizer, while reducing the negative impact on the environment, and promoting the sustainable development of agriculture. It also laid a solid foundation for further optimizing millet planting technology and improving the yield and quality of millet.

Key words

bio-organic fertilizer / fertilization amount / millet / cultivation / growth trait

Cite this article

Download Citations
WU Suxia , ZHAO Peng , FAN Hairong , et al . Effect of Bio-organic Fertilizer on Growth Trait of Millet[J]. Chinese Agricultural Science Bulletin. 2025, 41(8): 19-24 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0763

References

[1]
薛亚鹏, 王蓉, 柴小娇, 等. 谷子四大名米品种群农艺及品质性状评价与亲缘关系分析[J]. 植物遗传资源学报, 2024, 25(4):904-921.
[2]
LIU L, XU W, LU X, et al. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(14):e2121998119.
SignificanceAgricultural systems are already major forces of ammonia pollution and environmental degradation. How agricultural ammonia emissions affect the spatio-temporal patterns of nitrogen deposition and where to target future mitigation efforts, remains poorly understood. We develop a substantially complete and coherent agricultural ammonia emissions dataset in nearly recent four decades, and evaluate the relative role of reduced nitrogen in total nitrogen deposition in a spatially explicit way. Global reduced nitrogen deposition has grown rapidly, and will occupy a greater dominant position in total nitrogen deposition without future ammonia regulations. Recognition of agricultural ammonia emissions on nitrogen deposition is critical to formulate effective policies to address ammonia related environmental challenges and protect ecosystems from excessive nitrogen inputs.
[3]
REN K, XU M, LI R, et al. Optimizing nitrogen fertilizer use for more grain and less pollution[J]. Journal of cleaner production, 2022,360:132180.
[4]
田苗, 李鹏, 赵珅, 等. 生物有机肥及其应用效果[J]. 现代化农业, 2023(1):27-30.
[5]
郭之乐, 杨宸, 孙朝阳, 等. 生物有机肥在作物品质改良和土壤修复中的研究进展[J]. 湖南农业科学, 2022(11):101-106.
[6]
武恩嘉, 袁朗月, 吴鹏, 等. 黄冈市生物有机肥发展前景[J]. 湖北植保, 2024(2):8-12.
[7]
SHI R, WANG S, XIONG B, et al. Application of bioorganic fertilizer on Panax notoginseng improves plant growth by altering the rhizosphere microbiome structure and metabolism[J]. Microorganisms, 2022, 10(2):275.
[8]
王振. 黑龙江省发展生物有机肥产业的必要性与建议[J]. 当代畜牧, 2022(12):141-142.
[9]
NAHER U A, BISWAS J C, MANIRUZZAMAN M, et al. Bio-organic fertilizer: a green technology to reduce synthetic N and P fertilizer for rice production[J]. Frontiers in plant science, 2021,12:602052.
[10]
郑聪斌. 不同锌肥处理对甜玉米性状和产量的影响[J]. 基层农技推广, 2024, 12(4):10-13.
[11]
马桂梅, 普继雄. 生物有机肥对大棚黄瓜产量和品质的影响[J]. 云南农业科技, 2024(2):30-31.
[12]
柳文凯, 雷永忠, 王莉, 等. 化肥减量配施生物有机肥对高原夏季露地大白菜生长生理及养分吸收的影响[J]. 江西农业大学学报, 2024, 46(2):340-355.
[13]
张小娟, 殷建军. 不同青贮玉米品种鉴选及灰色关联度分析[J]. 种业导刊, 2024(2):16-23.
[14]
王超, 刘欣宇, 赵宝龙, 等. 生物有机肥对温室番茄品质和土壤肥力的影响[J]. 北方园艺, 2024(5):1-12.
[15]
杨怀玉. 生物有机肥对农作物生长的促进作用[J]. 安徽农学通报, 2021, 27(24):96-97,100.
[16]
张凤英, 林芝芝, 和加卫. 生物有机肥对大棚西瓜生长特性及品质的影响[J]. 北方园艺, 2016(14):51-57.
[17]
周舟, 王俊, 张杏雨, 等. 生物有机肥对水稻产量和温室气体排放影响的研究进展[J]. 江苏农业科学, 2024, 52(6):19-25.
[18]
LING QH, HUANG WH, JARVIS P. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana[J]. Photosynthesis research, 2011, 107(2):209-214.
The SPAD-502 meter is a hand-held device that is widely used for the rapid, accurate and non-destructive measurement of leaf chlorophyll concentrations. It has been employed extensively in both research and agricultural applications, with a range of different plant species. However, its utility has not been fully exploited in relation to the most intensively studied model organism for plant science research, Arabidopsis thaliana. Measurements with the SPAD-502 meter produce relative SPAD meter values that are proportional to the amount of chlorophyll present in the leaf. In order to convert these values into absolute units of chlorophyll concentration, calibration curves must be derived and utilized. Here, we present calibration equations for Arabidopsis that can be used to convert SPAD values into total chlorophyll per unit leaf area (nmol/cm(2); R(2) = 0.9960) or per unit fresh weight of leaf tissue (nmol/mg; R(2) = 0.9809). These relationships were derived using a series of Arabidopsis chloroplast biogenesis mutants that exhibit chlorophyll deficiencies of varying severity, and were verified by the subsequent analysis of senescent or light-stressed leaves. Our results revealed that the converted SPAD values differ from photometric measurements of solvent-extracted chlorophyll by just ~6% on average.
[19]
吕亮雨, 樊光辉, 付全, 等. 生物有机肥对枸杞生长及土壤性状的影响[J]. 新疆农业科学, 2023, 60(11):2779-2789.
【目的】 研究施用生物有机肥对有机枸杞生长发育、产量品质及土壤性状的影响。【方法】 以宁杞 7 号为材料,于生长季(7~11月)以不施肥为对照(CK),比较不同生物有机肥处理对枸杞生长的影响及土壤养分含量差异。【结果】 与CK相比,施用生物有机肥处理均降低了土壤电导率和pH,提高了土壤有机质、全氮、全磷、全钾、碱解氮、速效磷、速效钾含量,施用44.55 L/hm<sup>2</sup>复合型生物有机肥土壤改良效果明显,与CK差异显著;施用生物有机肥后,枸杞叶片光合特性得到改善,枸杞植株树高和冠幅显著提高,施44.55 L/hm<sup>2</sup>复合型生物肥的效果最佳;施用木霉菌生物有机肥、复合型生物有机肥和芽孢杆菌生物有机肥后各处理产量增加了4.8%~21.7%、11.9%~31.4%和3.5%~21.7%,并改善了枸杞果实品质,枸杞果实中枸杞多糖、黄酮、类胡萝卜素、甜菜碱、抗坏血酸多酚含量分别较CK显著提高,施用44.55 L/hm<sup>2</sup>复合型生物肥果实品质最好。【结论】 不同生物有机肥处理下枸杞的生长状况均得到一定程度改善,土壤理化性质得到改良,其中施用44.55 L/hm<sup>2</sup>复合型生物有机肥肥效果最好。
[20]
王丽霞, 黄大野, 刘永霞, 等. 配施有机肥对白三叶草生长及香蕉园土壤生态的改良作用[J]. 中南农业科技, 2024, 45(1):3-6,20.
为探明香蕉园间作白三叶草(Trifolium repens L.)模式下配施纯羊粪和生物有机肥对白三叶草的生物量和营养元素含量及香蕉园土壤理化性质的影响,采用间作白三叶草+常规管理(CK)、间作白三叶草+施用纯羊粪、间作白三叶草+施用生物有机肥3个处理做对比分析。结果表明,间作条件下配施纯羊粪,白三叶草地上部和地下部的生物量分别显著增加17%和10%,地上部和地下部的N、P、K含量分别显著增加21%、33%、17%和13%、15%、53%,土壤有机质、pH、全氮和速效钾含量分别显著增加17%、3%、22%和3%;间作条件下配施生物有机肥,白三叶草地上部和地下部的生物量分别显著增加19%和25%,地上部和地下部的N、P、K含量分别显著增加26%、12%、5%和44%、50%、22%,土壤有机质、pH、全氮和速效钾含量分别显著增加42%、4%、33%和4%。由此可见,在香蕉园间作白三叶草模式下配施纯羊粪或生物有机肥均能显著提高白三叶草的生物量和N、P、K元素含量,同时还能改善香蕉园土壤生态,且配施生物有机肥优于配施纯羊粪。
[21]
文慧宝, 杜双江, 程贵庆, 等. 生物炭与有机肥配施对白菜生长品质、土壤养分及酶活性的影响[J]. 江苏农业科学, 2023, 51(20):224-230
[22]
杜彩艳, 蜂述先, 杨鹏, 等. 施用生物有机肥对云当归产量、品质及土壤养分的影响[J]. 中国土壤与肥料, 2024(1):149-156.
PDF(1159 KB)

Accesses

Citation

Detail

Sections
Recommended

/