Maize Leaf Disease Recognition Based on Transferred and Improved MobileNetV3

JINYuchun, ZHENYuanyuan, LIUPing

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (23) : 145-154.

PDF(2638 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2638 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (23) : 145-154. DOI: 10.11924/j.issn.1000-6850.casb2024-0773

Maize Leaf Disease Recognition Based on Transferred and Improved MobileNetV3

Author information +
History +

Abstract

In recent years, the application of deep learning algorithms in the field of image recognition has gradually expanded into agricultural production, particularly in the area of crop disease detection. Leveraging transfer learning techniques within deep learning, a method for identifying corn leaf diseases based on an improved MobileNetV3 model has been proposed. Pre-trained weights from the ImageNet dataset were transferred to the target dataset, and the model was further optimized. During the optimization process, the original SE (Squeeze-and-Excitation) module was replaced with a CBAM (Convolutional Block Attention Module) attention module, and dilated convolutions were introduced into the convolutional layers to increase the receptive field. After training, an optimal model for corn leaf disease identification was obtained. After applying transfer learning, the model's accuracy on the training set increased from 96.30% to 98.20%, with an improvement of 1.9 percentage points. With further optimization, the accuracy reached 99.09%, demonstrating improved classification performance. This enhancement not only retains the lightweight characteristics of MobileNetV3 but also significantly boosts the performance of corn leaf disease identification.

Key words

corn disease identification / transfer learning / MobileNetV3 / attention mechanism

Cite this article

Download Citations
JIN Yuchun , ZHEN Yuanyuan , LIU Ping. Maize Leaf Disease Recognition Based on Transferred and Improved MobileNetV3[J]. Chinese Agricultural Science Bulletin. 2025, 41(23): 145-154 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0773

References

[1]
李少昆, 王崇桃. 我国玉米产量变化及增产因素分析[J]. 玉米科学, 2008(4):26-30.
[2]
张娣. 我国玉米病害现状及防治措施[J]. 南方农机, 2017, 48(17):57.
[3]
MILLER S A, BEED F D, HARMON C L. Plant disease diagnostic capabilities and networks[J]. Annual review of phytopathology, 2009, 47(1):15-38.
[4]
佘奎军, 刘永进, 贺奇, 等. 2001—2015年宁夏玉米病虫害发生特征与损失分析[J]. 环境昆虫学报, 2017, 39(5):1071-1080.
[5]
WANG H, LIN Y, XU X, et al. A study on long-close distance coordination control strategy for litchi picking[J]. Agronomy, 2022, 12(7):1520.
[6]
WEN C, WU J, CHEN H, et al. Wheat spike detection and counting in the field based on SpikeRetinaNet[J]. Frontiers in plant science, 2022, 13:821717.
[7]
KANG J, LIU L, ZHANG F, et al. Semantic segmentation model of cotton roots in-situ image based on attention mechanism[J]. Computers and electronics in agriculture, 2021, 189:106370.
[8]
江顺, 黄红星, 莫里楠, 等. 基于改进AlexNet的岭南水稻虫害识别方法研究[J]. 江苏农业科学, 2023, 51(23):187-195.
[9]
李明泽, 张静, 雷亚平, 等. 基于卷积神经网络的棉花关键生育时期识别[J]. 核农学报, 2024, 38(10):2020-2031.
为实现棉花生育时期的快速识别,本研究将无人机遥感与图像识别和深度学习技术相结合,以不同品种、不同种植密度的棉花为研究对象,基于搭载RGB相机的无人机获取棉花不同生育时期的冠层图像,对获取的图像进行分割,并将分割后的图像数据集作为输入向量训练卷积神经网络模型(VGGNet19和GoogleNet),建立识别棉花关键生育时期的模型,然后通过对比分析2个学习率(0.000 1和0.000 5)和4个dropout(0.4、0.5、0.6、0.7)组成的8个训练模型,筛选出最优模型。结果表明,GoogleNet训练模型在学习率为0.000 1、dropout为0.6时的准确率最高(98.06%),性能评估指标最好;而VGGNet19训练模型在学习率为0.000 5、dropout为0.5时的准确率最高(72.26%),评估效果最好。综合对比模型训练结果、训练轮数、预测集测试结果以及性能评价,GoogleNet卷积神经网络(CNN)模型对棉花关键生育时期识别的效果优于VGGNet19模型,且学习率为0.000 1、dropout为0.6时的GoogleNet训练模型是识别棉花关键生育时期的最优模型。本研究为棉花生育时期的快速识别提供了技术支撑,也为其他农作物的生育期研究提供了借鉴方法。
[10]
de SÁ LEITÃO D A H, SHARMA A K, SINGH A, et al. Yield and plant height predictions of irrigated maize through unmanned aerial vehicle in North Florida[J]. Computers and electronics in agriculture, 2023, 215:108374.
[11]
王大庆, 禄琳, 于兴龙, 等. 基于深度迁移学习的EfficientNet玉米叶部病害识别[J]. 东北农业大学学报, 2023, 54(5):66-76.
[12]
杨明欣, 张耀光, 刘涛. 基于卷积神经网络的玉米病害小样本识别研究[J]. 中国生态农业学报(中英文), 2020, 28(12):1924-1931.
[13]
凌慕菲, 杨冬风. 基于改进YOLOv5s模型的玉米叶片病害识别[J]. 农业灾害研究, 2023, 13(8):126-128.
[14]
CHENG H B, LI H M. Identification of apple leaf disease via novel attention mechanism based convolutional neural network[J]. Frontiers in plant science, 2023, 14:1274231.
[15]
XIE W, WEI S, ZHENG Z, et al. Recognition of defective carrots based on deep learning and transfer learning[J]. Food and bioprocess technology, 2021, 14(7):1361-1374.
[16]
崔金荣, 魏文钊, 赵敏. 基于改进MobileNetV3的水稻病害识别模型[J]. 农业机械学报, 2023, 54(11):217-224.
[17]
SI H, WANG Y, ZHAO W, et al. Apple surface defect detection method based on weight comparison transfer learning with MobileNetV3[J]. Agriculture, 2023, 13(4):824.
[18]
师翊, 王应宽, 王菲, 等. MCBPnet:一种高效的轻量级青杏识别模型[J]. 农业工程学报, 2025, 41(5):156-164.
[19]
HAN D, LIU Q, FAN W. A new image classification method using CNN transfer learning and web data augmentation[J]. Expert systems with applications, 2018, 95:43-56.
[20]
吴迪, 肖衍, 沈学军, 等. 基于改进Res2Net与迁移学习的水果图像分类[J]. 电子科技大学学报, 2025, 54(1):62-71.
[21]
刘鑫鹏, 栾悉道, 谢毓湘, 等. 迁移学习研究和算法综述[J]. 长沙大学学报, 2018, 32(5):28-31.
[22]
王中璞, 吴正香, 尤美路, 等. 基于改进MobileNetV2的棉花颜色分级检测[J]. 棉纺织技术, 2024, 52(6):15-21.
[23]
戴敏, 孙文靖, 缪宏. 基于轻量化CBAM-GoogLeNet的辣椒病虫害识别[J]. 中国农机化学报, 2025, 46(2):224-229.
[24]
谭泗桥, 陈涵, 朱磊, 等. 基于改进YOLOv8m的稻田害虫识别方法[J]. 农业工程学报, 2025, 41(2):185-195.
[25]
徐胜军, 欧阳朴衍, 郭学源, 等. 多尺度特征融合空洞卷积ResNet遥感图像建筑物分割[J]. 光学精密工程, 2020, 28(7):1588-1599.
[26]
DOU S, WANG L, FAN D, et al. Classification of Citrus Huanglongbing Degree based on CBAM-MobileNetV2 and transfer learning[J]. Sensors, 2023, 23(12):5587.
[27]
赖勤波, 马正华, 朱蓉. 基于注意力机制和空洞卷积的无人机图像目标检测[J]. 计算机应用与软件, 2025, 42(2):227-235.
PDF(2638 KB)

Accesses

Citation

Detail

Sections
Recommended

/