Resource Status of Coilia nasus in Poyang Lake and Preliminary Estimation of Its Environmental Capacity Under Extremely Low Water Level

WUBin, ZHANGHaixin, WUZijun, YUJianfang, QUEXiangyao, HOUMingyong, ZHANGYanping

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (23) : 155-164.

PDF(1605 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1605 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (23) : 155-164. DOI: 10.11924/j.issn.1000-6850.casb2024-0777

Resource Status of Coilia nasus in Poyang Lake and Preliminary Estimation of Its Environmental Capacity Under Extremely Low Water Level

Author information +
History +

Abstract

In order to conduct a dynamic analysis of the fishery resources in Poyang Lake, a study on the resource status of Coilia nasus and its environmental carrying capacity under extreme low water levels was carried out. Based on the fishery resource survey data, the length-based Bayesian biomass estimation method was used to obtain the relevant parameters of Coilia nasus population, and the Ecopath model was applied to estimate its environmental carrying capacity under extreme low water levels. The results showed that the average L∞ of Coilia nasus in Poyang Lake was 374 (368-381) mm; the resource status index E (F/Z) was 0.067, far less than 0.5; the ratio of current biomass to original biomass (B/B0) was 0.89 (0.225-2.6), which was greater than 0.5; from 2018 to 2022, L∞ and B/B0 showed an upward trend, while the ratio of fishing mortality to natural mortality (F/M) showed a downward trend, indicating that the resources of Coilia nasus showed a recovery trend after the fishing ban. The Ecopath model revealed that environmental carrying capacity of Coilia nasus in Poyang Lake was 5.03 t/km2 (approximately 1136.78 t), while its current biomass was 2.83 t/km2 (approximately 639.58 t). Currently, the overall resources of Coilia nasus in Poyang Lake are in an undeveloped state. The environmental carrying capacity has restricted the population growth of Coilia nasus to a certain extent, but there is still a large growth space for its population. The results of this study provide a scientific basis for the sustainable management of Coilia nasus resources and the protection of the entire lake ecosystem in Poyang Lake.

Key words

Coilia nasus / fisheries resources / extremely low water level / environmental capacity / Poyang Lake

Cite this article

Download Citations
WU Bin , ZHANG Haixin , WU Zijun , et al . Resource Status of Coilia nasus in Poyang Lake and Preliminary Estimation of Its Environmental Capacity Under Extremely Low Water Level[J]. Chinese Agricultural Science Bulletin. 2025, 41(23): 155-164 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0777

References

[1]
张世义. 中国动物志硬骨鱼纲[M]. 北京: 科学出版社,2011:155-156.
[2]
杨丽亚, 吕红健, 付梅, 等. 三峡库区短颌鲚年龄和生长特性的研究[J]. 水生生物学报, 2022, 46(1):17-28.
[3]
FROESE R, WINKER H, CORO G, et al. A new approach for estimating stock status from length frequency data[J]. ICES journal of marine science, 2018, 75(6):2004-2015.
[4]
张曼, 王雪辉, 王淼娣, 等. 基于长度贝叶斯生物量估算法的北部湾带鱼资源评估[J]. 海洋学报, 2022, 44(1):11-21.
[5]
王淼娣, 王雪辉, 杜飞雁, 等. 基于LBB方法估算北部湾竹鱼种群参数[J]. 上海海洋大学学报, 2022, 31(1):212-222.
[6]
王淼娣, 王雪辉, 孙典荣, 等. 基于长度贝叶斯生物量估算法评估北部湾大头白姑鱼资源状况[J]. 南方水产科学, 2021, 17(2):20-27.
[7]
王雪辉, 邱永松, 杜飞雁, 等. 基于长度贝叶斯生物量法估算北部湾二长棘鲷种群参数[J]. 水产学报, 2020, 44(10):1654-1662.
[8]
WANG Y, WANG Y, LIU S, et al. Stock assessment using LBB method for eight fish species from the Bohai and Yellow Seas[J]. Frontiers in marine science, 2020, 7:164.
[9]
AL-MAMUN M A, LIU Q, CHOWDHURY S R, et al. Stock assessment for seven fish species using the LBB method from the northeastern tip of the bay of Bengal, Bangladesh[J]. Sustainability, 2021, 13(3):1561.
[10]
BARMAN P P, LIU Q, AL-MAMUN M A, et al. Stock assessment of exploited sardine populations from northeastern bay of Bengal water, Bangladesh using the length-based Bayesian biomass (LBB) method[J]. Journal of marine science and engineering, 2021, 9(10):1137.
[11]
ZHAI L, PAULY D. Construction and interpretation of particle size distribution spectra from 19 ecopath models of Chinese coastal ecosystems[J]. Frontiers in marine science, 2020, 7:298.
[12]
CHRISTENSEN V, WALTERS C J, PAULY D. Ecopath with Ecosim:A User's Guide[M]. Vancouver: Fisheries Centre, University of British Columbia, 2005.
[13]
李云凯, 宋兵, 陈勇, 等. 太湖生态系统发育的Ecopath with Ecosim动态模拟[J]. 中国水产科学, 2009, 16(2):257-265.
[14]
武震, 贾佩峤, 胡忠军, 等. 基于Ecopath模型分析分水江水库生态系统结构和功能[J]. 应用生态学报, 2012, 23(3):812-818.
[15]
MCMULLEN K, VARGAS F H, CALLE P, et al. Modelling microplastic bioaccumulation and biomagnification potential in the Galápagos penguin ecosystem using Ecopath and Ecosim (EwE) with Ecotracer[J]. PLoS One, 2024, 19(1): e0296788.
[16]
李永涛. 天鹅洲江豚生境选择、环境容纳量和种群生存力分析 :迁地保护理论初探[D]. 武汉: 中国科学院水生生物研究所, 2017.
[17]
李云凯, 刘恩生, 王辉, 等. 基于Ecopath模型的太湖生态系统结构与功能分析[J]. 应用生态学报, 2014, 25(7):2033-2040.
根据2008—2009年太湖湖区水生生物调查的结果及主要水生动物摄食生态学已发表资料,应用Ecopath with Ecosim 6.1软件构建了太湖生态系统的食物网模型,初步分析了太湖生态系统功能与结构特征.模型由初级生产者、主要鱼类及无脊椎动物和有机碎屑等20个功能组组成.结果表明: 太湖生态系统的能流主要分布在4个营养级上,顶级捕食者鲌鱼营养级最高.食物网存在两条主要的营养传递途径,即碎屑食物链和牧食食物链,且碎屑食物链占比较大;营养级I的利用效率低下,大量初级生产力未能流入更高的营养层次,造成生态系统下层的营养流动“阻塞”.对系统总体特征分析发现,反映系统成熟度的指标,包括较高的净初级生产力(NPP)和净初级生产力/呼吸(NPP/R),以及较低的连接指数(CI)、系统杂食指数(SOI)和Finn循环指数(FCI)等,都揭示了太湖“幼态化”的生态系统现状;混合营养分析和关键种筛选结果显示,高强度的渔业捕捞活动对系统负影响显著,而顶级捕食者的下行效应显著下降. 
[18]
赵旭昊, 徐东坡, 任泷, 等. 基于Ecopath模型的太湖鲢鳙生态容量评估[J]. 中国水产科学, 2021, 28(6):785-795.
[19]
LIU Q G, CHEN Y, LI J L, et al. The food web structure and ecosystem properties of a filter-feeding carps dominated deep reservoir ecosystem[J]. Ecological modelling, 2007, 203(3-4):279-289.
[20]
陈文静, 贺刚, 吴斌, 等. 鄱阳湖通江水道鱼类空间分布特征及资源量评估[J]. 湖泊科学, 2017, 29(4):923-931.
[21]
王生, 段辛斌, 陈文静, 等. 鄱阳湖湖口鱼类资源现状调查[J]. 淡水渔业, 2016, 46(6):50-55.
[22]
李长春, 李云, 谢钦铭, 等. 鄱阳湖虾类资源最大持续产量及其开发利用的研究[J]. 江西科学, 1990(4):28-33.
[23]
WANG Y, KAO Y C, ZHOU Y, et al. Can water level management, stock enhancement, and fishery restriction offset negative effects of hydrological changes on the four major Chinese carps in China’s largest freshwater lake?[J]. Ecological modelling, 2019, 403:1-10.
[24]
于佳, 刘佳睿, 王利, 等. 基于Ecopath模型的千岛湖生态系统结构和功能分析[J]. 水生生物学报, 2021, 45(2):308-317.
[25]
刘恩生, 李云凯, 臧日伟, 等. 基于Ecopath模型的巢湖生态系统结构与功能初步分析[J]. 水产学报, 2014, 38(3):417-425.
[26]
徐超, 王思凯, 赵峰, 等. 基于Ecopath模型的长江口生态系统营养结构和能量流动研究[J]. 海洋渔业, 2018, 40(3):309-318.
[27]
YANG J, WAN X, ZENG X, et al. A preliminary study on diet of the Yangtze finless porpoise using next-generation sequencing techniques[J]. Marine mammal science, 2019, 35(4): 1579-1586.
[28]
LI Y, SONG B, CHEN Y, et al. Changes in the trophic interactions and the community structure of Lake Taihu (China) ecosystem from the 1960s to 1990s[J]. Aquatic ecology, 2010, 44(2):337-348.
[29]
吴斌, 方春林, 傅培峰, 等. 鄱阳湖通江水道短颌鲚生长特性初探[J]. 水生态学杂志, 2015, 36(3):51-55.
[30]
史登福, 张魁, 蔡研聪, 等. 南海北部带鱼群体结构及生长、死亡和性成熟参数估计[J]. 南方水产科学, 2020, 16(5):51-59.
PDF(1605 KB)

Accesses

Citation

Detail

Sections
Recommended

/