
Research Progress on Biological Enhancement of Soils Contaminated with Polycyclic Aromatic Hydrocarbons: Focusing on Bacterial Chemotaxis Mechanism and Application
LIUYuantong, SHIYueqi, AOGuoxu, WANGZhaoxuan, SUNShanshan
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (11) : 55-63.
Abbreviation (ISO4): Chin Agric Sci Bull
Editor in chief: Yulong YIN
Research Progress on Biological Enhancement of Soils Contaminated with Polycyclic Aromatic Hydrocarbons: Focusing on Bacterial Chemotaxis Mechanism and Application
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants widely present in the environment. Their concentrations in soil can reach several thousand micrograms per kilogram, causing serious damage to the soil ecological environment. Traditional physical and chemical remediation methods are not only costly, but also potentially cause secondary pollution. Currently, bioremediation has been proven to be clean and sustainable and is widely used for PAHs-contaminated soil remediation. Importantly, the bacterial chemotaxis mechanism enables more PAHs-degrading bacteria to actively migrate towards the target contaminant, thereby improving the bioavailability of PAHs to microorganisms. Therefore, this article reviewed the degradation mechanism of how bacterial chemotaxis can enhance the bioavailability of PAHs and offered suggestions for future theoretical and applied research directions in microbial PAH degradation, providing a theoretical basis for further exploring the degradation mechanism of bacterial chemotaxis in PAHs.
polycyclic aromatic hydrocarbons / bio-enhancement / bacterial chemotaxis / soil environmental remediation / chemotaxis mechanism
[1] |
王萌瑶, 王建, 汤磊, 等. 土壤中多环芳烃衍生物污染特征及其生物降解[J]. 中国环境科学, 2024, 44(11):6464-6471.
|
[2] |
卢城德, 张放. 多环芳烃职业接触危害研究进展[J]. 中国职业医学, 2017, 44(4):502-504,509.
|
[3] |
徐超. 多环芳烃污染土壤修复技术研究进展[J]. 现代农业科技, 2024(15):92-95.
|
[4] |
赵立坤, 包仕钰, 郭涛, 等. 焦化污染场地土壤多环芳烃的生物强化协同降解工艺研究[J]. 环境工程技术学报, 2023, 13(5):1701-1710.
|
[5] |
|
[6] |
Spatially-distributed populations of various types of bacteria often display intricate spatial patterns that are thought to result from the cellular response to gradients of nutrients or other attractants. In the past decade a great deal has been learned about signal transduction, metabolism and movement in E. coli and other bacteria, but translating the individual-level behavior into population-level dynamics is still a challenging problem. However, this is a necessary step because it is computationally impractical to use a strictly cell-based model to understand patterning in growing populations, since the total number of cells may reach 10(12) - 10(14) in some experiments. In the past phenomenological equations such as the Patlak-Keller-Segel equations have been used in modeling the cell movement that is involved in the formation of such patterns, but the question remains as to how the microscopic behavior can be correctly described by a macroscopic equation. Significant progress has been made for bacterial species that employ a "run-and-tumble" strategy of movement, in that macroscopic equations based on simplified schemes for signal transduction and turning behavior have been derived [14, 15]. Here we extend previous work in a number of directions: (i) we allow for time-dependent signals, which extends the applicability of the equations to natural environments, (ii) we use a more general turning rate function that better describes the biological behavior, and (iii) we incorporate the effect of hydrodynamic forces that arise when cells swim in close proximity to a surface. We also develop a new approach to solving the moment equations derived from the transport equation that does not involve closure assumptions. Numerical examples show that the solution of the lowest-order macroscopic equation agrees well with the solution obtained from a Monte Carlo simulation of cell movement under a variety of temporal protocols for the signal. We also apply the method to derive equations of chemotactic movement that are governed by multiple chemotactic signals.
|
[7] |
Interest in the biodegradation mechanisms and environmental fate of polycyclic aromatic hydrocarbons (PAHs) is motivated by their ubiquitous distribution, their low bioavailability and high persistence in soil, and their potentially deleterious effect on human health. Due to high hydrophobicity and solid-water distribution ratios, PAHs tend to interact with non-aqueous phases and soil organic matter and, as a consequence, become potentially unavailable for microbial degradation since bacteria are known to degrade chemicals only when they are dissolved in water. As the aqueous solubility of PAHs decreases almost logarithmically with increasing molecular mass, high-molecular weight PAHs ranging in size from five to seven rings are of special environmental concern. Whereas several reviews have focussed on metabolic and ecological aspects of PAH degradation, this review discusses the microbial PAH-degradation with special emphasis on both biological and physico-chemical factors influencing the biodegradation of poorly available PAHs.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
A significant number of bacterial strains are able to use toxic aromatic hydrocarbons as carbon and energy sources. In a number of cases, the evolution of the corresponding degradation pathway was accompanied by the evolution of tactic behaviours either towards or away from these toxic carbon sources. Reports are reviewed which show that a chemoattraction to heterogeneously distributed aromatic pollutants increases the bioavailability of these compounds and their biodegradation efficiency. An extreme form of chemoattraction towards aromatic pollutants, termed 'hyperchemotaxis', was described for Pseudomonas putida DOT-T1E, which is based on the action of the plasmid-encoded McpT chemoreceptor. Cells with this phenotype were found of being able to approach and of establishing contact with undiluted crude oil samples. Although close McpT homologues are found on other degradation plasmids, the sequence of their ligand-binding domains does not share significant similarity with that of NahY, the other characterized chemoreceptor for aromatic hydrocarbons. This may suggest the existence of at least two families of chemoreceptors for aromatic pollutants. The use of receptor chimers comprising the ligand-binding region of McpT for biosensing purposes is discussed.© 2012 The Society for Applied Microbiology.
|
[14] |
How bacterial chemotaxis is performed is much better understood than why. Traditionally, chemotaxis has been understood as a foraging strategy by which bacteria enhance their uptake of nutrients and energy, yet it has remained puzzling why certain less nutritious compounds are strong chemoattractants and vice versa. Recently, we have gained increased understanding of alternative ecological roles of chemotaxis, such as navigational guidance in colony expansion, localization of hosts or symbiotic partners and contribution to microbial diversity by the generation of spatial segregation in bacterial communities. Although bacterial chemotaxis has been observed in a wide range of environmental settings, insights into the phenomenon are mostly based on laboratory studies of model organisms. In this Review, we highlight how observing individual and collective migratory behaviour of bacteria in different settings informs the quantification of trade-offs, including between chemotaxis and growth. We argue that systematically mapping when and where bacteria are motile, in particular by transgenerational bacterial tracking in dynamic environments and in situ approaches from guts to oceans, will open the door to understanding the rich interplay between metabolism and growth and the contribution of chemotaxis to microbial life.© 2022. Springer Nature Limited.
|
[15] |
|
[16] |
Micro-organisms sense and chemotactically respond to aromatic compounds. Although the existence of chemoreceptors that bind to aromatic attractants and subsequently trigger chemotaxis have long been speculated, such a chemoreceptor has not been demonstrated. In this report, we demonstrated that the chemoreceptor MCP2901 from Comamonas testosteroni CNB-1 binds to aromatic compounds and initiates downstream chemotactic signaling in addition to its ability to trigger chemotaxis via citrate binding. The function of gene MCP2901 was investigated by genetic deletion from CNB-1 and genetic complementation of the methyl-accepting chemotaxis protein (MCP)-null mutant CNB-1Δ20. Results showed that the expression of MCP2901 in the MCP-null mutant restored chemotaxis toward nine tested aromatic compounds and nine carboxylic acids. Isothermal titration calorimetry (ITC) analyses demonstrated that the ligand-binding domain of MCP2901 (MCP2901LBD) bound to citrate, and weakly to gentisate and 4-hydroxybenzoate. Additionally, ITC assays indicated that MCP2901LBD bound strongly to 2,6-dihydroxybenzoate and 2-hydroxybenzoate, which are isomers of gentisate and 4-hydroxybenzoate respectively that are not metabolized by CNB-1. Agarose-in-plug and capillary assays showed that these two molecules serve as chemoattractants for CNB-1. Through constructing membrane-like MCP2901-inserted Nanodiscs and phosphorelay activity assays, we demonstrated that 2,6-dihydroxybenzoate and 2-hydroxybenzoate altered kinase activity of CheA. This is the first evidence of an MCP binding to an aromatic molecule and triggering signal transduction for bacterial chemotaxis.© 2016 John Wiley & Sons Ltd.
|
[17] |
We report the identification of McpS as the specific chemoreceptor for 6 tricarboxylic acid (TCA) cycle intermediates and butyrate in Pseudomonas putida. The analysis of the bacterial mutant deficient in mcpS and complementation assays demonstrate that McpS is the only chemoreceptor of TCA cycle intermediates in the strain under study. TCA cycle intermediates are abundantly present in root exudates, and taxis toward these compounds is proposed to facilitate the access to carbon sources. McpS has an unusually large ligand-binding domain (LBD) that is un-annotated in InterPro and is predicted to contain 6 helices. The ligand profile of McpS was determined by isothermal titration calorimetry of purified recombinant LBD (McpS-LBD). McpS recognizes TCA cycle intermediates but does not bind very close structural homologues and derivatives like maleate, aspartate, or tricarballylate. This implies that functional similarity of ligands, such as being part of the same pathway, and not structural similarity is the primary element, which has driven the evolution of receptor specificity. The magnitude of chemotactic responses toward these 7 chemoattractants, as determined by qualitative and quantitative chemotaxis assays, differed largely. Ligands that cause a strong chemotactic response (malate, succinate, and fumarate) were found by differential scanning calorimetry to increase significantly the midpoint of protein unfolding (T(m)) and unfolding enthalpy (DeltaH) of McpS-LBD. Equilibrium sedimentation studies show that malate, the chemoattractant that causes the strongest chemotactic response, stabilizes the dimeric state of McpS-LBD. In this respect clear parallels exist to the Tar receptor and other eukaryotic receptors, which are discussed.
|
[18] |
|
[19] |
|
[20] |
Central to the different forms of taxis are methyl-accepting chemotaxis proteins (MCPs). The increasing number of genome sequences reveals that MCPs differ enormously in sequence, topology and genomic abundance. This work is a one-by-one bioinformatic analysis of the almost-totality of MCP genes available and a classification of motile bacteria according to their lifestyle. On average, motile archaea have 6.7 MCP genes per genome whereas motile bacteria have more than twice as much. We show that the number of MCPs per genome depends on bacterial lifestyle and metabolic diversity, but weakly on genome size. Signal perception at an MCP occurs at the N-terminal ligand binding region (LBR). Here we show that around 88% of MCPs possess an LBR that remains un-annotated in SMART. MCPs can be classified into two clusters according to the size of the LBR. Cluster I receptors have an LBR between 120 and 210 amino acids whereas cluster II receptors have larger LBRs of 220-299 amino acids. There is evidence that suggests that some cluster II LBRs are composed of two cluster I LBRs. Further evidence indicates that other cluster II LBRs might harbour novel sensor domains. Cluster II receptors are dominant in archaea whereas cluster I receptors are prevalent in bacteria. MCPs can be classified into six different receptor topologies and this work contains a first estimation of the relative abundance of different receptor topologies in bacteria and archaea. Topologies involving extracytoplasmic sensing are prevalent in bacteria whereas topologies with cytosolic signal recognition are abundant in archaea.© 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
|
[21] |
Magnetospirillum sp. strain AMB-1 is a Gram-negative alpha-proteobacterium that synthesizes nano-sized magnetites, referred to as magnetosomes, aligned intracellularly in a chain. The potential of this nano-sized material is growing and will be applicable to broad research areas. It has been expected that genome analysis would elucidate the mechanism of magnetosome formation by magnetic bacteria. Here we describe the genome of Magnetospirillum sp. AMB-1 wild type, which consists of a single circular chromosome of 4967148 bp. For identification of genes required for magnetosome formation, transposon mutagenesis and determination of magnetosome membrane proteins were performed. Analysis of a non-magnetic transposon mutant library focused on three unknown genes from 2752 unknown genes and three genes from 205 signal transduction genes. Partial proteome analysis of the magnetosome membrane revealed that the membrane contains numerous oxidation/reduction proteins and a signal response regulator that may function in magnetotaxis. Thus, oxidation/reduction proteins and elaborate multidomain signaling proteins were analyzed. This comprehensive genome analysis will enable resolution of the mechanisms of magnetosome formation and provide a template to determine how magnetic bacteria maintain a species-specific, nano-sized, magnetic single domain and paramagnetic morphology.
|
[22] |
|
[23] |
Statistical fluctuations limit the precision with which a microorganism can, in a given time T, determine the concentration of a chemoattractant in the surrounding medium. The best a cell can do is to monitor continually the state of occupation of receptors distributed over its surface. For nearly optimum performance only a small fraction of the surface need be specifically adsorbing. The probability that a molecule that has collided with the cell will find a receptor is Ns/(Ns + pi a), if N receptors, each with a binding site of radius s, are evenly distributed over a cell of radius a. There is ample room for many indenpendent systems of specific receptors. The adsorption rate for molecules of moderate size cannot be significantly enhanced by motion of the cell or by stirring of the medium by the cell. The least fractional error attainable in the determination of a concentration c is approximately (TcaD) - 1/2, where D is diffusion constant of the attractant. The number of specific receptors needed to attain such precision is about a/s. Data on bacteriophage absorption, bacterial chemotaxis, and chemotaxis in a cellular slime mold are evaluated. The chemotactic sensitivity of Escherichia coli approaches that of the cell of optimum design.
|
[24] |
|
[25] |
The chemotactic behavior of Escherichia coli mutants defective in cheB function, which is required to remove methyl esters from methyl-accepting chemotaxis proteins, was investigated by subjecting swimming or antibody-tethered cells to various attractant chemicals. Two cheB point mutants, one missense and one nonsense, exhibited stimulus response times much longer than did the wild type, but they eventually returned to the prestimulus swimming pattern, indicating that they were not completely defective in sensory adaptation. In contrast, strains deleted for the cheB function showed no evidence of adaptation ability after stimulation. The crucial difference between these strains appeared to be the residual level of cheB-dependent methylesterase activity they contained. Both point mutants showed detectable levels of methanol evolution due to turnover of methyl groups on methyl-accepting chemotaxis protein molecules, whereas the cheB deletion mutant did not. In addition, it was possible to incorporate the methyl label into the methyl-accepting chemotaxis proteins of the point mutants but not into those of the cheB deletion strain. These findings indicate that cheB function is essential for sensory adaptation in Escherichia coli.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
Summary Mycobacterium is often isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil as degraders of PAHs. In model systems, Mycobacterium shows attachment to the PAH substrate source, which is considered to be a particular adaptation to low bioavailability as it results into increased substrate flux to the degraders. To examine whether PAH-degrading Mycobacterium in real PAH-contaminated soils, in analogy with model systems, are preferentially associated with PAH-enriched soil particles, the distribution of PAHs, of the PAH-mineralizing capacity and of Mycobacterium over different fractions of a soil with an aged PAH contamination was investigated. The clay fraction contained the majority of the PAHs and showed immediate pyrene- and phenanthrene-mineralizing activity upon addition of (14)C-labelled pyrene or phenanthrene. In contrast, the sand and silt fractions showed a lag time of 15-26 h for phenanthrene and 3-6 days for pyrene mineralization. The maximum pyrene and phenanthrene mineralization rates of the clay fraction expressed per gram fraction were three to six times higher than those of the sand and silt fractions. Most-probable-number (MPN)-polymerase chain reaction demonstrated that Mycobacterium represented about 10% of the eubacteria in the clay fraction, while this was only about 0.1% in the sand and silt fractions, indicating accumulation of Mycobacterium in the PAH-enriched clay fraction. The Mycobacterium community composition in the clay fraction represented all dominant Mycobacterium populations of the bulk soil and included especially species related to Mycobacterium pyrenivorans, which was also recovered as one of the dominant species in the eubacterial communities of the bulk soil and the clay fraction. Moreover, Mycobacterium could be identified among the major culturable PAH-degrading populations in both the bulk soil and the clay fraction. The results demonstrate that PAH-degrading mycobacteria are mainly associated with the PAH-enriched clay fraction of the examined PAH-contaminated soil and hence, that also in the environmental setting of a PAH-contaminated soil, Mycobacterium might experience advantages connected to substrate source attachment.
|
[36] |
|
[37] |
张朝辉, 张广, 闻亚美, 等. 1-氨基环丙烷-1-羧酸在恶臭假单胞菌趋化双孢蘑菇菌丝中的作用[J]. 华北农学报, 2019, 34(6):209-218.
|
[38] |
|
[39] |
During the consumption of alkanes, will form a biofilm around an oil droplet, but the role this plays during degradation remains unclear. We identified a shift in biofilm morphology that depends on adaptation to oil consumption: Longer exposure leads to the appearance of dendritic biofilms optimized for oil consumption effected through tubulation of the interface. In situ microfluidic tracking enabled us to correlate tubulation to localized defects in the interfacial cell ordering. We demonstrate control over droplet deformation by using confinement to position defects, inducing dimpling in the droplets. We developed a model that elucidates biofilm morphology, linking tubulation to decreased interfacial tension and increased cell hydrophobicity.
|
[40] |
Neonicotinoid insecticides are applied worldwide for the control of agricultural insect pests. The evolution of neonicotinoid resistance has led to the failure of pest control in the field. The enhanced detoxifying enzyme activity and target mutations play important roles in the resistance of insects to neonicotinoid resistance. Emerging evidence indicates a central role of the gut symbiont in insect pest resistance to pesticides. Existing reports suggest that symbiotic microorganisms could mediate pesticide resistance by degrading pesticides in insect pests.The 16S rDNA sequencing results showed that the richness and diversity of the gut community between the imidacloprid-resistant (IMI-R) and imidacloprid-susceptible (IMI-S) strains of the cotton aphid Aphis gossypii showed no significant difference, while the abundance of the gut symbiont Sphingomonas was significantly higher in the IMI-R strain. Antibiotic treatment deprived Sphingomonas of the gut, followed by an increase in susceptibility to imidacloprid in the IMI-R strain. The susceptibility of the IMI-S strain to imidacloprid was significantly decreased as expected after supplementation with Sphingomonas. In addition, the imidacloprid susceptibility in nine field populations, which were all infected with Sphingomonas, increased to different degrees after treatment with antibiotics. Then, we demonstrated that Sphingomonas isolated from the gut of the IMI-R strain could subsist only with imidacloprid as a carbon source. The metabolic efficiency of imidacloprid by Sphingomonas reached 56% by HPLC detection. This further proved that Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction.Our findings suggest that the gut symbiont Sphingomonas, with detoxification properties, could offer an opportunity for insect pests to metabolize imidacloprid. These findings enriched our knowledge of mechanisms of insecticide resistance and provided new symbiont-based strategies for control of insecticide-resistant insect pests with high Sphingomonas abundance.© 2023. The Author(s).
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
/
〈 |
|
〉 |