Studies on Functional Composition of Mint and its Application in Processing of Agricultural Products

LIUJiaxin, WANGXiuqin, HUANGWeidong, YOUYilin

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (12) : 130-141.

PDF(2011 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2011 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (12) : 130-141. DOI: 10.11924/j.issn.1000-6850.casb2025-0061

Studies on Functional Composition of Mint and its Application in Processing of Agricultural Products

Author information +
History +

Abstract

Peppermint is a food-medicine crop with secondary metabolites as core functional components. It has a wide range of biological activities. The bioactivities of peppermint are mainly related to its abundant active constituents, such as menthol, menthone, montaflorin, hesperidin, caffeic acid and other constituents, which have anti-inflammatory, antioxidant, antibacterial and antitumour effects. This paper reviews the distribution of resources and major origins of peppermint, the analytical studies of the major functional components of peppermint, the progress of nutritional and pharmacological studies of the major functional components, as well as the prediction and quality control of the core quality components of peppermint. Finally, the application fields and prospects of peppermint in agricultural product processing are discussed to provide direction and basis for the application of peppermint processing.

Key words

peppermint / resource distribution / functional constituent / quality control / pharmacological action / agro-processing

Cite this article

Download Citations
LIU Jiaxin , WANG Xiuqin , HUANG Weidong , et al. Studies on Functional Composition of Mint and its Application in Processing of Agricultural Products[J]. Chinese Agricultural Science Bulletin. 2025, 41(12): 130-141 https://doi.org/10.11924/j.issn.1000-6850.casb2025-0061

References

[1]
郭明遗, 邓艳, 杜前红, 等. 青李薄荷酒发酵工艺优化及风味成分分析[J]. 食品与机械, 2023, 39(6):201-209.
[2]
赵俊, 李亚红, 付思明, 等. 云南调味蔬菜发展现状[J]. 中国蔬菜, 2013, 17:12-13.
[3]
苏敬. 唐·新修本草[M]. 合肥: 安徽科学技术出版社, 1981.
[4]
BOUYAHYA A, LAGROUH F, OMARI E N, et al. Essential oils of Mentha viridis rich phenolic compounds show important antioxidant, antidiabetic, dermatoprotective, antidermatophyte and antibacterial properties[J]. Biocatalysis and agricultural biotechnology, 2020, 23:101-471.
[5]
EFTEKHARI A, KHUSRO A, AHMADIAN E, et al. Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: a comprehensive review[J]. Arabian journal of chemistry, 2021, 14(5):103-106.
[6]
杨倩, 詹志来, 欧阳臻, 等. 薄荷的本草考证[J]. 中国野生植物资源, 2018, 37(4):60-64.
[7]
姜慧, 廖天月, 万晶琼, 等. 经典名方中薄荷的本草考证[J]. 中国实验方剂学杂志, 2022, 28(10):150-158.
[8]
周露, 谢文申. 薄荷属植物选种育种研究进展[J]. 安徽农业大学学报, 2012, 39(1):124-128.
[9]
BUNSAWAT J, ELLIOTT N E, HERTWECK K L, et al. Phylogenetics of Mentha (Lamiaceae): evidence from chloroplast DNA sequences[J]. Systematic botany, 2004, 29(4):959-964.
[10]
王菲菲, 刘杰, 何风艳, 等. 薄荷属3种植物及变种的性状鉴别、化学成分分析及DNA条形码研究比较[J]. 药学学报, 2019, 54(11):2083-2088.
[11]
韦金河, 张晓青. 唇形科野菜的利用价值及种植技术[J]. 江苏农业科学, 2015, 43(11):210-213.
[12]
NABI A, NAEEM M, AFTAB T, et al. Arsenic toxicity induced changes in growth, photosynthetic pigments, antioxidant machinery, essential oil, menthol and other active constituents of menthol mint(Mentha arvensis L.)[J]. Journal of essential oil bearing plants, 2019, 22(5):1333-1348.
[13]
DONG T N. 越南河内栽培薄荷精油的化学成分研究[J]. 亚太传统医药, 2006(1):58-59.
[14]
马延康, 叶卫, 张瑞博, 等. 芳香地被植物普列薄荷驱虫在樱桃园应用研究[J]. 陕西林业科技, 2010(6):10-12.
[15]
THI N Q N, DUC L T, MINH L, et al. Phytochemicals and antioxidant activity of aqueous and ethanolic extracts of Mentha aquatica L.[J]. 5thinternational conference of chemical engineering and industrial biotechnology (ICCEIB 2020), 2020, 991:12-27.
[16]
张莹, 娄方明, 杨建文, 等. 顶空固相微萃取-气质联用分析黔产圆叶薄荷挥发油[J]. 华南师范大学学报(自然科学版), 2022, 54(6):44-50.
[17]
TAYLAN O, CEBI N, SAGDIC O. Rapid screening of Mentha spicata essential oil and L-menthol in Mentha piperita essential oil by ATR-FTIR spectroscopy coupled with multivariate analyses[J]. Foods, 2021, 10(2):202.
[18]
王兆丰, 丁自勉, 何江, 等. 薄荷化学成分药理作用与产品研发进展[J]. 中国现代中药, 2020, 22(6):979-984.
[19]
WU Z, TAN B, LIU Y, et al. Chemical composition and antioxidant properties of essential oils from peppermint, native spearmint and scotch spearmint[J]. Molecules, 2019, 24(15):2825.
[20]
OMARI N E, CHAMKHI I, BALAHBIB A, et al. GC-MS-MS analysis and biological properties determination of Mentha piperita L., essential oils[J]. Biochemical systematics and ecology, 2024, 116:104875.
[21]
THUYEN N T B, PHONG H Q, HANH C L N, et al. Study on morphology, distillation process, chemical compositions, and biological activities of Mentha arvensis L. var. javanica (Blume) Hook. f essential oil[J]. Journal of the taiwan institute of chemical engineers, 2023, 153:105209.
[22]
李晓侠, 翟姣, 张效宝, 等. 8种薄荷属植物在黄河三角洲地区精油含量及成分研究[J]. 山东林业科技, 2018, 48(3):32-34.
[23]
MONTENEGRO I, SAID B, GODOY P, et al. Antifungal activity of essential oil and main components from Mentha pulegium growing wild on the chilean central coast[J]. Agronomy-basel, 2020, 10(2):254.
[24]
PIRES P C, MOTALLEBI M, MARQUES M P, et al. Mentha aquatica (water mint) as a source of active pharmaceutical and cosmetic ingredients: a critical review[J]. Phytotherapy research, 2024, 38(12):5806-5839.
[25]
KOWALCZYK A, PIATKOWSKA E, KUS P, et al. Volatile compounds and antibacterial effect of commercial mint cultivars-chemotypes and safety[J]. Industrial crops and products, 2021, 166:113430.
[26]
陶笑寒. 薄荷浸渍与共发酵对葡萄酒香气品质的影响[D]. 北京: 中国农业大学, 2024:8-12.
[27]
LU L, CAO H, LI H, et al. Diversity and profiles of volatile compounds in twenty-five peppermint genotypes grown in China[J]. International journal of food properties, 2022, 25(1):1472-1484.
[28]
PLAVSIC D V, SKRINJAR M M, PSODOROV D B, et al. Chemical structure and antifungal activity of mint essential oil components[J]. Journal of the serbian chemical society, 2020, 85(9):1149-1161.
[29]
吕爽, 田呈瑞, 石慧. 不同干燥方法对薄荷多酚、总黄酮及抗氧化性的影响[J]. 食品与发酵工业, 2012, 38(5):112-116.
[30]
LIU R H, WANG Y T, LIANG C L, et al. Morphology and mass spectrometry-based chemical profiling of peltate glandular trichomes on Mentha haplocalyx Briq leaves[J]. Food research international, 2023, 164:112323.
[31]
VELICKA A, TARASEVICIENE Z, HALLMANN E, et al. Impact of foliar application of amino acids on essential oil content, odor profile, and flavonoid content of different mint varieties in field conditions[J]. Plants-basel, 2022, 11(21):29-38.
[32]
ZAMLJEN T, GROHAR M C, MEDIC A. Mint-scented species in Lamiaceae: an abundant and varied reservoir of phenolic and volatile compounds[J]. Foods, 2024, 13(12):1857.
[33]
孙慧娟, 王瑞, 宋芊芊, 等. 基于超快速液相色谱-质谱联用技术检测药食两用薄荷中氨基酸和核苷类成分[J]. 食品与发酵工业, 2020, 46(8):261-266.
该研究旨在建立超快速液相色谱-质谱联用技术(ultra-fast liquid chromatography-mass spectrometry,UFLC-MS/MS)分析方法,对薄荷中31种氨基酸和核苷类成分进行分析评价,为薄荷的资源综合利用提供科学依据。应用Waters XBridge Amide 色谱柱(100 mm×2.1 mm,3.5 μm);流动相为0.2%甲酸水-0.2%甲酸乙腈,梯度洗脱,流速0.2 mL/min,柱温30 ℃,正离子多反应监测(multiple reaction monitoring,MRM)模式测定。采用PCA和TOPSIS方法对样品进行综合评价。结果表明,21种氨基酸和10种核苷类成分线性关系良好(r2>0.999 0),方法精密度、重复性、稳定性良好,RSD值均大于3.85%,加样回收率在94.18%~98.76%,RSD在1.17%~3.56%。薄荷中含有丰富的氨基酸和核苷类成分,不同产地间含量差异较大,其中以阜阳产薄荷样品综合质量最优。该方法准确、高效,结果可为药食两用薄荷的质量评价和综合利用提供可靠依据。
[34]
MESSAOUDI M, REBIAI A, SAWICKA B, et al. Effect of extraction methods on polyphenols, flavonoids, mineral elements, and biological activities of essential oil and extracts of Mentha pulegium L.[J]. Molecules, 2022, 27(1):11.
[35]
ZHAO Q, ZHU L Y, WANG S N, et al. Molecular mechanism of the anti-inflammatory effects of plant essential oils: a systematic review[J]. Journal of ethnopharmacology, 2023, 301:115829.
[36]
ARARUNA M E, SERAFIM C, JUNIOR E A, et al. Intestinal anti-inflammatory activity of terpenes in experimental models (2010-2020): a review[J]. Molecules, 2020, 25(22):5430.
[37]
RAI V K, SINHA P, YADAW K S, et al. Anti-psoriatic effect of Lavandula angustifolia essential oil and its major components linalool and linalyl acetate[J]. Journal of ethnopharmacology, 2020, 261:113-127.
[38]
MOGOSAN C, VOSTINARU O, OPREAN R, et al. A comparative analysis of the chemical composition, anti-inflammatory, and antinociceptive effects of the essential oils from three species of Mentha cultivated in Romania[J]. Molecules, 2017, 22(2):263.
[39]
HILFIGER L, TRIAUX Z, MARCIC C, et al. Anti-hyperalgesic properties of menthol and pulegone[J]. Frontiers in pharmacology, 2021, 12:753-873.
[40]
LIU S Q, GUO W J, JIA Y X, et al. Menthol targeting AMPK alleviates the inflammatory response of bovine mammary epithelial cells and restores the synthesis of milk fat and milk protein[J]. Frontiers in immunology, 2021, 12:782989.
[41]
CHEN X J, WU Q Y, CAO X H, et al. Menthone inhibits type-I interferon signaling by promoting Tyk2 ubiquitination to relieve local inflammation of rheumatoid arthritis[J]. International immunopharmacology, 2022, 112:109228.
[42]
FLOARE A, DUMITRESCU R, ALEXA V T, et al. Enhancing the antimicrobial effect of ozone with Mentha piperita essential oil[J]. Molecules, 2023, 28(5):20-32.
[43]
ISCAN G, KIRIMER N, KURKCUOGLU M, et al. Antimicrobial screening of Mentha piperita essential oils[J]. Journal of agricultural and food chemistry, 2002, 50(14):3943-3946.
[44]
LI S J, CHENG F, CAO X Q, et al. Evaluation of antimicrobial activity and mechanism of Mentha longifolia L. essential oil[J]. Journal of food safety, 2023, 43(5):e13058.
[45]
CHRYSARGYRIS A, XYLIA P, BOTSARIS G, et al. Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels[J]. Industrial crops and products, 2017, 103:202-212.
[46]
ELANSARY H O, SZOPA A, KUBICA P, et al. Polyphenol profile and antimicrobial and cytotoxic activities of natural Mentha x piperita and Mentha longifolia populations in Northern Saudi Arabia[J]. Processes, 2020, 8(4):479.
[47]
HEJNA M, KOVANDA L, ROSSI L, et al. Mint oils: in vitro ability to perform anti-inflammatory, antioxidant, and antimicrobial activities and to enhance intestinal barrier integrity[J]. Antioxidants, 2021, 10(7):1004.
[48]
DJERIDANE A, YOUSFI M, NADJEMI B, et al. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds[J]. Food chemistry, 2006, 97(4):654-660.
[49]
李佩佩, 杨子君, 陈荫, 等. 薄荷多糖的提取工艺及其抗氧化、抗病毒活性的研究[J]. 食品科技, 2014, 39(12):196-201.
[50]
MU S, YANG W, HUANG G. Antioxidant activities and mechanisms of polysaccharides[J]. Chemical biology & drug design, 2021, 97(3):628-632.
[51]
BROWN N, JOHN J A, SHAHIDI F. Polyphenol composition and antioxidant potential of mint leaves[J]. Food production, processing and nutrition, 2019. DOI:10.1186/s43014-019-0001-8.
[52]
LOU H Y, FAN P H, PEREZ R G, et al. Neuroprotective effects of linarin through activation of the PI3K/Akt pathway in amyloid-β-induced neuronal cell death[J]. Bioorganic & medicinal chemistry, 2011, 19(13):4021-4027.
[53]
JAEGER A K, ALMQVIST J P, VANGSOE S A K, et al. Compounds from Mentha aquatica with affinity to the GABA-benzodiazepine receptor[J]. South African journal of botany, 2007, 73(4):518-521.
[54]
WELBAT J U, NAEWLA S, PANNANGRONG W, et al. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat[J]. Biochemical pharmacology, 2020, 178:114083.
[55]
LI X Y, HUANG W, TAN R R, et al. The benefits of hesperidin in central nervous system disorders, based on the neuroprotective effect[J]. Biomedicine & pharmacotherapy, 2023, 159:114222.
[56]
BELLASSOUED K, HSOUNA A B, ATHMOUNI K, et al. Protective effects of Mentha piperita L. leaf essential oil against CCl4 induced hepatic oxidative damage and renal failure in rats[J]. Lipids in health and disease, 2018, 17(1):9.
[57]
MATOUK A I, EL-DALY M, HABIB H A, et al. Protective effects of menthol against sepsis-induced hepatic injury: role of mediators of hepatic inflammation, apoptosis, and regeneration[J]. Frontiers in pharmacology, 2022, 13:952337.
[58]
SAAD A B, RJEIBI I, ALIMI H, et al. Protective effects of Mentha spicata against nicotine-induced toxicity in liver and erythrocytes of Wistar rats[J]. Applied physiology nutrition and metabolism, 2018, 43(1):77-83.
[59]
FANG C C, CHEN G J, KAN J Q. Comparison on characterization and biological activities of Mentha haplocalyx polysaccharides at different solvent extractions[J]. International journal of biological mcromolecules, 2020, 154:916-928.
[60]
CAM M, BASYIGIT B, ALASALVAR H, et al. Bioactive properties of powdered peppermint and spearmint extracts: Inhibition of key enzymes linked to hypertension and type 2 diabetes[J]. Food bioscience, 2020, 35:100577.
[61]
OLIVEIRA B L E, SILVA G G D, OLIVEIRA S I M, et al. Gastrointestinal effects of Mentha aquatica L. essential oil[J]. Inflammopharmacology, 2022, 30(6):2127-2137.
[62]
TANVEER M, WAGNER C, HAQ M I U, et al. Spicing up gastrointestinal health with dietary essential oils[J]. Phytochemistry reviews, 2020, 19(2):243-263.
[63]
AMATO A, LIOTTA R, MULE F. Effects of menthol on circular smooth muscle of human colon: analysis of the mechanism of action[J]. European journal of pharmacology, 2014, 740:295-301.
Menthol is the major constituent of peppermint oil, an herbal preparation commonly used to treat nausea, spasms during colonoscopy and irritable bowel disease. The mechanism responsible for its spasmolytic action remains unclear. The aims of this study were to investigate the effects induced by menthol on the human distal colon mechanical activity in vitro and to analyze the mechanism of action. The spontaneous or evoked-contractions of the circular smooth muscle were recorded using vertical organ bath. Menthol (0.1 mM-30 mM) reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions without affecting the frequency and the resting basal tone. The inhibitory effect was not affected by 5-benzyloxytryptamine (1 μM), a transient receptor potential-melastatin8 channel antagonist, or tetrodotoxin (1 μM), a neural blocker, or 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (10 µM), inhibitor of nitric oxide (NO)-sensitive soluble guanylyl cyclase, or tetraethylammonium (10 mM), a blocker of potassium (K+)-channels. On the contrary, nifedipine (3 nM), a voltage-activated L-type Ca2+ channel blocker, significantly reduced the inhibitory menthol actions. Menthol also reduced in a concentration-dependent manner the contractile responses caused by exogenous application of Ca2+ (75-375 μM) in a Ca2+-free solution, or induced by potassium chloride (KCl; 40 mM). Moreover menthol (1-3 mM) strongly reduced the electrical field stimulation (EFS)-evoked atropine-sensitive contractions and the carbachol-contractile responses. The present results suggest that menthol induces spasmolytic effects in human colon circular muscle inhibiting directly the gastrointestinal smooth muscle contractility, through the block of Ca2+ influx through sarcolemma L-type Ca2+ channels.Copyright © 2014 Elsevier B.V. All rights reserved.
[64]
SANTOS R D S, NUNES P H M, LIMA G D M, et al. Hypokinetic activity of menthofuran on the gastrointestinal tract in rodents[J]. Evidence-based complementary and alternative medicine, 2023, 2023(1):2726794.
[65]
FIGUEROA-PEREZ M G, PEREZ-RAMIREZ I F, ENCISO-MORENO J A, et al. Diabetic nephropathy is ameliorated with peppermint (Mentha piperita) infusions prepared from salicylic acid-elicited plants[J]. Journal of functional foods, 2018, 43:55-61.
[66]
YU H, HUANG L, GUI L, et al. Luteolin ameliorates hyperuricemic nephropathy by activating urate excretion and Nrf2/HO-1/NQO1 antioxidant pathways in mice[J]. Food science & nutrition, 2024, 12(10):8053-8066.
[67]
YAN C, ZENG J, LI H, et al. Research on the chemical composition of Mentha haplocalyx volatile oils from different geographical origins by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry in combination with principal component analysis and the enrichment of bioactive compounds by particle-assisted solvent sublation[J]. Microchemical journal, 2023, 188:108477.
[68]
朱邵晴, 朱振华, 郭盛, 等. 不同干燥方法对薄荷药材中多元功效成分的影响与评价[J]. 中国中药杂志, 2015, 40(24):4860-4867.
[69]
陈晓思, 梁洁, 林婧, 等. 薄荷的化学成分、药理作用和质量标志物预测研究概况[J]. 中华中医药学刊, 2021, 39(3):213-217.
[70]
BAKR R O, TAWFIKE A F, ELGIZAWY H A, et al. The metabolomic analysis of five Mentha species: cytotoxicity, anti-Helicobacter assessment, and the development of polymeric micelles for enhancing the anti-Helicobacter activity[J]. Rsc advances, 2021, 11(15):8916.
[71]
MAKKAR M K, SHARMA S, KAUR H. Evaluation of Mentha arvensis essential oil and its major constituents for fungitoxicity[J]. Journal of food science and technology-mysore, 2018, 55(9):3840-3844.
[72]
AL-IBRAHEMI N, AL-YASSSIRY A S, AL-LAITH Z N, et al. Phytochemical study of volatile oils for the Ocimum basilicum L. and Mentha spicata by gas chromatography technique[J]. IOP conference series. earth and environmental science, 2023, 1158(6):62004.
[73]
HASSANPOURAGHDAM M B, HASSANI A. Oven and conventional drying methods affect volatile oil content and composition of Mentha pulegium L.[J]. Journal of essential oil bearing plants, 2014, 17(2):346-352.
[74]
OMARI N E, CHAMKHI I, BAKRIM S, et al. Biological properties of Mentha viridis L. essential oil and its main monoterpene constituents[J]. Chemistry & biodiversity, 2024, 21(9):e202401209-e202401209.
[75]
TARASEVICIENCE Z, VELICKA A, PAULAUSKIENE A. Impact of foliar application of amino acids on total phenols, phenolic acids content of different mints varieties under the field condition[J]. Plants-basel, 2021, 10(3):599.
[76]
SHE G M, XU C, LIU B, et al. Polyphenolic acids from mint (the aerial of Mentha haplocalyx Briq.) with DPPH radical scavenging activity[J]. Journal of food science, 2010, 75(4):C359-C362.
[77]
KRIN A, MORENO M M Q, PEREZ C, et al. A scent of peppermint-a microwave spectroscopy analysis on the composition of peppermint oil[J]. Symmetry-basel, 2022, 14(6):12-62.
[78]
MYODA T, MATSUMURA T, WATANABE K, et al. Components of essential oil of the Japanese mint 'Hokuto' and its deodorization effects against human malodors[J]. Journal of essential oil research, 2018, 30(6):431-436.
[79]
胡少伟, 钟昆芮, 杨佳颖, 等. 薄荷茎、叶中黄酮类成分在不同采收期的含量差异性研究[J]. 中国中药杂志, 2018, 43(3):544-550.
[80]
吴恒, 吴雨松, 朱玲超, 等. Needle trap-GC-MS法分析云南不同产地薄荷的挥发性成分[J]. 云南大学学报(自然科学版), 2015, 37(2):265-271.
[81]
SUN Z, WANG H, WANG J, et al. Chemical composition and anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita grown in China[J]. PloS one, 2014, 9(12):e114767.
[82]
林文庭. 速溶性高浓薄荷风味膜状食品的研制[J]. 食品科技, 2003, 3:33-34.
[83]
王珂. 辛烯基琥珀酸淀粉酯包埋薄荷香精的研究[D]. 无锡: 江南大学, 2024:94-107.
[84]
何逸菲, 李文惠. 薄荷汁液对腌制白菜中亚硝酸盐的影响[J]. 上海预防医学, 2023, 35(6):585-588.
[85]
舒依琳. 脱醇和薄荷处理对柿子发酵原酒品质及香气的影响[D]. 北京: 中国农业大学, 2024:11-15.
[86]
陈鸿彬, 梁鹏, 汪晴, 等. 响应面法优化海鲈鱼鱼肉脱腥工艺[J]. 食品安全质量检测学报, 2022, 13(13):4203-4211.
[87]
IPPOLITO C, DANIELA G, ELSHAFIE H S. Chemical composition and antimicrobial properties of Mentha x piperita cv. 'Kristinka' essential oil[J]. Plants-basel, 2021, 10(8):1567.
[88]
ASHRAFUDOULLA M, MEVO S I U, SONG M, et al. Antibiofilm mechanism of peppermint essential oil to avert biofilm developed by foodborne and food spoilage pathogens on food contact surfaces[J]. Journal of food science, 2023, 88(9):3935-3955.
[89]
刘明学, 申秀娟, 李琼芳, 等. 薄荷浸提液的抑菌效果及猪肉保鲜研究[J]. 食品科技, 2009, 34(6):108-112.
[90]
MATEWOS O A, BADESSA T S, MEKONNEN T A, et al. Shelf-life improvement of raw milk using ethanolic extracts of selected medicinal plants (Moringa stenopetale, Artemesia anua and Mentha Spicata)[J]. Heliyon, 2023, 9(7):e17659.
[91]
SAAD A M, MOHAMED A S, EL-SAADONY M T, et al. Palatable functional cucumber juices supplemented with polyphenols-rich herbal extracts[J]. Lwt-food science and technology, 2021, 148:111668.
[92]
苗清霞, 赵军武, 刘清霞. 山楂薄荷营养面包的制作工艺[J]. 食品研究与开发, 2015, 36(16):84-88.
[93]
吴晶, 陈婉莹, 刘丹婷. 薄荷曲奇饼干的研制[J]. 食品安全导刊, 2023, 34:126-129.
[94]
SZEKELYHIDI R, LAKATOS E, SIK B, et al. The beneficial effect of peppermint (Mentha X Piperita L.) and lemongrass (Melissa officinalis L.) dosage on total antioxidant and polyphenol content during alcoholic fermentation[J]. Food chemistry-x, 2022, 13:100226.
PDF(2011 KB)

Accesses

Citation

Detail

Sections
Recommended

/