Advances in Crop Nitrogen Diagnosis Based on UAV Remote Sensing

HANYanlu, ZHUYi, YINYilu, WANGHuizheng, LANYubin, ZHAOShuo

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (24) : 126-134.

PDF(1192 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1192 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (24) : 126-134. DOI: 10.11924/j.issn.1000-6850.casb2025-0090

Advances in Crop Nitrogen Diagnosis Based on UAV Remote Sensing

Author information +
History +

Abstract

This paper focuses on the application of UAV remote sensing in crop nitrogen diagnosis, and comprehensively summarizes the development of nitrogen diagnosis technology from traditional nitrogen diagnosis technology, diagnosis technology based on digital image analysis to diagnosis technology of UAV remote sensing. The research and application progress of UAV remote sensing technology in nitrogen diagnosis of various crops are deeply analyzed. It is pointed out that the technology has the advantages of strong mobility, high degree of automation, non-destructive and high efficiency in precision agriculture. At the same time, the current challenges of the technology are objectively analyzed, such as massive data processing, limited model generalization ability, high application cost, and vulnerability to environmental interference. Finally, the future directions of deepening the mechanism and innovation model, breaking through the bottleneck of core technology, building intelligent application ecology, and promoting standardization and scale are prospected, aiming to provide theoretical support for promoting the in-depth application of UAV remote sensing technology in the field of precision agriculture.

Key words

UAV remote sensing / nitrogen diagnosis / digital image analysis / precision agriculture / non-destructive and efficient / data fusion

Cite this article

Download Citations
HAN Yanlu , ZHU Yi , YIN Yilu , et al . Advances in Crop Nitrogen Diagnosis Based on UAV Remote Sensing[J]. Chinese Agricultural Science Bulletin. 2025, 41(24): 126-134 https://doi.org/10.11924/j.issn.1000-6850.casb2025-0090

References

[1]
RAY S, HAQIQI I, HILL A E, et al. Labor markets: a critical link between global-local shocks and their impact on agriculture[J]. Environmental research letters, 2023, 18(3):35007.
[2]
HAIKUAN F, HUILIN T, ZHENHAI L, et al. Comparison of UAV RGB imagery and hyperspectral remote-sensing data for monitoring winter wheat growth[J]. Remote sensing, 2022, 14(15):3811.
[3]
ZHU H, LIN C, LIU G, et al. Intelligent agriculture: deep learning in UAV-based remote sensing imagery for crop diseases and pests detection[J]. Frontiers in plant science, 2024,15:1435016.
[4]
谭雨蕾, 李雪岩, 张力元. 高光谱遥感在农作物研究中的应用与发展趋势[J]. 中国农学通报, 2024, 40(34):141-148.
高光谱遥感是目前农作物研究的重要技术手段。为促进农作物生长周期的健康发展和基础研究,提高遥感技术在农作物研究中的应用水平,笔者概述了高光谱遥感在农作物研究中的分析算法,重点讨论了高光谱遥感在农作物长势、农作物信息监测和农作物信息提取方面的研究进展。针对目前仍需深入开展的叶面积指数、生物量估算、氮素监测、叶绿素监测、病虫害监测、重金属监测、农作物碳氮比和水分含量等研究进行了系统综述。分析结果表明,在农作物研究中高光谱遥感技术与人工智能的结合已初见成效,但仍难以满足现代农业的智能化需求,若与新一代信息技术和大模型集成交叉将发挥巨大的研究潜力。
[5]
何勇, 岑海燕, 何立文, 等. 农用无人机技术及其应用[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4):489.
[6]
孟凡彬, 张云鹏. 无人机技术在农业领域的应用及展望[J]. 时代农机, 2019, 46(2):49-50.
[7]
杨文云. 无人机技术在农业生产中的应用[J]. 农业灾害研究, 2018, 8(6):17-18.
[8]
郝雅洁, 史维杰, 赵明霞, 等. 论无人机技术在农业领域的应用[J]. 物联网技术, 2019, 9(9):59-62.
[9]
陈治钢, 廖桂平. 无人机高光谱遥感在作物表型监测中的应用进展[J]. 作物研究, 2024, 38(6):525-530.
[10]
BLEKANOV I, MOLIN A, ZHANG D, et al. Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches[J]. Computers and electronics in agriculture, 2023, 212:108047.
[11]
ZHANG J, HU Y, LI F, et al. Meta-analysis assessing potential of drone remote sensing in estimating plant traits related to nitrogen use efficiency[J]. Remote sensing, 2024, 16(5):838.
[12]
宋小云. 凯氏法测定土壤全氮的方法改进[J]. 环境与发展, 2019, 31(8):120-121.
[13]
刘小芳, 张泽, 吕新, 等. 基于硝酸盐的滴灌春小麦氮素追肥模型建立研究[J]. 新疆农业科学, 2017, 54(1):27-32.
[14]
王蕊, 史自航, 董冰, 等. 硝酸盐快速诊断技术在氮素营养诊断中的应用分析[J]. 中国农业大学学报, 2013, 18(3):81-90.
[15]
韩宁, 史普想, 金振, 等. 氮素营养诊断技术的发展及其在花生上的应用[J]. 辽宁农业科学, 2022(1):50-55.
[16]
陈魏涛, 曹宏鑫, 张保军, 等. 氮素营养诊断技术及其在油菜上的应用研究进展[J]. 江苏农业学报, 2016, 32(4):953-960.
[17]
李悦书. 关于作物氮素营养诊断方法的研究[J]. 山西农经, 2015(7):67.
[18]
孙凯旋, 张玉屏, 向镜, 等. 水稻氮素营养诊断及施用策略研究进展[J]. 杂交水稻, 2024, 39(2):1-7.
[19]
李鹏程, 郑苍松, 孙淼, 等. 国内棉花氮营养诊断和推荐施氮研究进展[J]. 中国棉花, 2019, 46(6):1-4,15.
综述了国内棉花氮营养诊断和推荐施氮的研究进展,主要包括土壤矿质氮测定、叶绿素仪速测、叶柄硝态氮测定、数字图像分析、遥感与光谱分析、氮临界浓度稀释模型等。新疆棉区的文献报道居多,但此类研究缺乏持续性和协同性,有待加强协同攻关。
[20]
王磊, 卢艳丽, 白由路. 主要粮食作物基于SPAD的氮素营养诊断方法研究进展[J]. 植物营养与肥料学报, 2022, 28(3):546-554.
[21]
ZHANG Z, XU X, JIN M, et al. A new curve of critical leaf nitrogen concentration based on the maximum root dry matter for diagnosing nitrogen nutritional status of sweetpotato[J]. European journal of agronomy, 2024,156:127176.
[22]
XIN Q, YANAN Z, YUFANG H, et al. A novel approach for nitrogen diagnosis of wheat canopies digital images by mobile phones based on histogram[J]. Scientific reports, 2021, 11(1):13012.
The accurate and nondestructive assessment of leaf nitrogen (N) is very important for N management in winter wheat fields. Mobile phones are now being used as an additional N diagnostic tool. To overcome the drawbacks of traditional digital camera diagnostic methods, a histogram-based method was proposed and compared with the traditional methods. Here, the field N level of six different wheat cultivars was assessed to obtain canopy images, leaf N content, and yield. The stability and accuracy of the index histogram and index mean value of the canopy images in different wheat cultivars were compared based on their correlation with leaf N and yield, following which the best diagnosis and prediction model was selected using the neural network model. The results showed that N application significantly affected the leaf N content and yield of wheat, as well as the hue of the canopy images and plant coverage. Compared with the mean value of the canopy image color parameters, the histogram could reflect both the crop coverage and the overall color information. The histogram thus had a high linear correlation with leaf N content and yield and a relatively stable correlation across different growth stages. Peak b of the histogram changed with the increase in leaf N content during the reviving stage of wheat. The histogram of the canopy image color parameters had a good correlation with leaf N content and yield. Through the neural network training and estimation model, the root mean square error (RMSE) and the mean absolute percentage error (MAPE) of the estimated and measured values of leaf N content and yield were smaller for the index histogram (0.465, 9.65%, and 465.12, 5.5% respectively) than the index mean value of the canopy images (0.526, 12.53% and 593.52, 7.83% respectively), suggesting a good fit for the index histogram image color and robustness in estimating N content and yield. Hence, the use of the histogram model with a smartphone has great potential application in N diagnosis and prediction for wheat and other cereal crops.
[23]
LI D, ZHANG P, CHEN T, et al. Recent development and challenges in spectroscopy and machine vision technologies for crop nitrogen diagnosis: a review[J]. Remote sensing, 2020, 12(16):2578.
[24]
齐欣, 汪洋, 黄玉芳, 等. 基于直方图的手机玉米冠层数字图像氮素诊断方法[J]. 中国农业科学, 2024, 57(20):4094-4106.
【目的】便捷准确地诊断作物氮素营养状况是实现作物精准施肥和氮肥资源合理利用的关键。近年来应用数码相机等工具进行作物营养诊断的研究受到广泛关注。本研究采用智能手机相机获取玉米冠层图像,建立完善的基于手机相机的氮素营养诊断技术,并比较传统的图像均值方法和直方图方法对氮素营养诊断的可靠性,以探明夏玉米氮素营养诊断的最佳适用模型。【方法】基于田间氮肥用量试验,采用智能手机相机获取夏玉米拔节期冠层图像,提取夏玉米冠层图像的G/R、G/B、NRI [R/(R+G+B)]、NGI [G/(R+G+B)]、NBI [B/(R+G+B)]和(G-R)/(R+G+B) 6种颜色指数均值及直方图敏感区间,分别建立冠层图像色彩参数均值模型与直方图模型,分析其与玉米叶片含氮量和产量的关系。利用决定系数(R<sup> 2</sup>)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)对比不同指数模型模拟估算玉米叶片含氮量和产量的稳定性和准确性,建立基于手机相机获取夏玉米冠层图像的氮素营养诊断模型。【结果】施氮量显著影响玉米叶片含氮量、产量及冠层图像色调和植被覆盖度。直方图波峰b随叶片含氮量的增加而发生变化,相较于冠层图像色彩参数指数均值方法,指数直方图法适用于不同品种的氮素诊断。色彩参数(G-R)/(R+G+B)直方图可以更好地反映作物覆盖率及整体颜色信息,指数直方图与玉米叶片含氮量和产量也呈现较好的相关性。基于神经网络模型验证数据集精度评价指标,指数直方图模型中玉米叶片含氮量和产量的MAPE值和RMSE值均低于指数均值模型,R<sup> 2</sup>达到0.753,大于指数均值模型。指数直方图模型验证结果MAPE值达到5.80%,RMSE值为0.07,估算精度高,泛化性强。结果表明,冠层图像色彩参数指数直方图在估算叶片含氮量和产量时具有更高精度和更强鲁棒性,能够有效利用玉米叶片覆盖度、颜色等特点,具有较好的稳定性。【结论】bbbbb利用智能手机相机获取玉米冠层数字图像,结合冠层图像色彩参数直方图方法建立的神经网络模型具有较好的应用效果,提高了估测精度,作为一种新方法在玉米氮素营养快速无损诊断和精准施肥中具有较好的应用潜力。
[25]
李紫琴, 王家强, 李贞, 等. 基于光谱指数的棉花叶片叶绿素密度估算研究[J]. 中国农业科技导报, 2024, 26(8):103-111.
[26]
李红宇, 高正武, 王志君, 等. 基于光谱反射率的寒地水稻叶片氮含量预测[J]. 光谱学与光谱分析, 2024, 44(9):2582-2593.
[27]
魏全全, 芶久兰, 李飞, 等. 基于无人机可见光遥感的马铃薯植株氮素累积估测与验证[J]. 核农学报, 2024, 38(10):2003-2010.
为探究无人机可见光遥感技术快速、无损监测马铃薯氮素营养的可能性,于2020—2022年在贵州省威宁县开展马铃薯不同氮肥梯度大田试验,设置7个氮素水平(0、60、120、180、240、300和360 kg·hm<sup>-2</sup>),利用无人机搭载可见光传感器获取不同年份马铃薯块茎形成期冠层RGB高清影像,并同步测定马铃薯地上部氮素含量、生物量和氮素累积量等氮素营养指标,以2020—2021年数据作为建模数据,以2022年数据作为验证数据,建立氮素营养指标估测方程模型并绘制实测值和预测值的1∶1线性关系图。结果表明,与其他冠层光谱参数相比,红光和蓝光比值(R/B)能更好地表征马铃薯氮素营养指标,其与地上部氮素含量、生物量、氮素累积量的相关性均达到极显著水平(P&lt;0.01),其中二次函数模型相关性均优于其他函数模型。利用2022年相同独立试验验证该模型准确性,地上部氮素含量、生物量、氮素累积量实测值与预测值的决定系数(R<sup>2</sup>)分别为0.949、0.977、0.977,均方根误差(RMSE)和相对误差(MRE)分别为0.368、0.149、0.073和10.42%、6.05%、8.85%,表明模型预测精度较好。综上,无人机可见光遥感可用于马铃薯氮素营养的评估预测,块茎形成期最佳预测参数为R/B,二次函数模型为最佳预测模型。本研究为马铃薯氮素营养无损评估预测提供了理论与实践依据。
[28]
LI D L, YANG S, DU Z Z, et al. Application of unmanned aerial vehicle optical remote sensing in crop nitrogen diagnosis: a systematic literature review[J]. Computers and electronics in agriculture, 2024,227:109565.
[29]
黄培峰, 朱立学, 陈家政. 农业无人机遥感技术研究进展[J]. 机电产品开发与创新, 2021, 34(3):43-45.
[30]
ZHANG H D, WANG L Q, TIAN T, et al. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China[J]. Remote sensing, 2021, 13(6):1221.
[31]
JEONG S, KO J, KIM M, et al. Construction of an unmanned aerial vehicle remote sensing system for crop monitoring[J]. Journal of applied remote sensing, 2016, 10(2):026027.
[32]
樊湘鹏, 周建平, 许燕. 无人机低空遥感监测农情信息研究进展[J]. 新疆大学学报(自然科学版)(中英文), 2021, 38(5):623-631.
[33]
HUANG Y, LI D, LIU X, et al. Monitoring canopy SPAD based on UAV and multispectral imaging over fruit tree growth stages and species[J]. Frontiers in plant science, 2024,15:1435613.
[34]
MIA M S, TANABE R, HABIBI L N, et al. Multimodal deep learning for rice yield prediction using UAV-based multispectral imagery and weather data[J]. Remote sensing, 2023, 15(10):2511.
[35]
HASSLER S C, BAYSAL-GUREL F. Unmanned aircraft system (UAS) technology and applications in agriculture[J]. Agronomy, 2019, 9(10):618.
[36]
ABDELMALEK B, HAFED Z, AHMED K, et al. A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images[J]. Cluster computing, 2022, 26(2):1297-1317.
[37]
NADIA D, CENGIZ K, JOHN N, et al. A technical study on UAV characteristics for precision agriculture applications and associated practical challenges[J]. Remote sensing, 2021, 13(6):1204.
[38]
DENG L, MAO Z H, LI X J, et al. UAV-based multispectral remote sensing for precision agriculture: a comparison between different cameras[J]. Isprs Journal of photogrammetry and remote Sensing, 2018,146:124-136.
[39]
LUO S J, JIANG X Q, YANG K L, et al. Multispectral remote sensing for accurate acquisition of rice phenotypes: impacts of radiometric calibration and unmanned aerial vehicle flying altitudes[J]. Frontiers in plant science, 2022,13:958106.
[40]
SHAHI T B, XU C Y, NEUPANE A, et al. Recent advances in crop disease detection using UAV and deep learning techniques[J]. Remote sensing, 2023, 15(9):2450.
[41]
YAO H, QIN R J, CHEN X Y. Unmanned aerial vehicle for remote sensing applications-a review[J]. Remote sensing, 2019, 11(12):1443.
[42]
LU B, DAO P D, LIU J G, et al. Recent advances of hyperspectral imaging technology and applications in agriculture[J]. Remote sensing, 2020, 12(16):2659.
[43]
张智韬, 边江, 韩文霆, 等. 无人机热红外图像计算冠层温度特征数诊断棉花水分胁迫[J]. 农业工程学报, 2018, 34(15):77-84.
[44]
MESSINA G, MODICA G. Applications of UAV thermal imagery in precision agriculture: state of the art and future research outlook[J]. Remote sensing, 2020, 12(9):1491.
[45]
GARCíA-TEJERO I F, ORTEGA-ARéVALO C J, IGLESIAS-CONTRERAS M, et al. Assessing the crop-water status in almond (Prunus dulcis Mill.) trees via thermal imaging camera connected to smartphone[J]. Sensors, 2018, 18(4):1050.
[46]
MADEC S, BARET F, DE SOLAN B, et al. High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates[J]. Frontiers in plant science, 2017,8:2002.
[47]
JIMENEZ-BERNI J A, DEERY D M, ROZAS-LARRAONDO P, et al. High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR[J]. Frontiers in plant science, 2018,9:237.
[48]
DEBNATH D, VANEGAS F, SANDINO J, et al. A review of UAV path-planning algorithms and obstacle avoidance methods for remote sensing applications[J]. Remote sensing, 2024, 16(21):4019.
[49]
YANG W, FU H, XU W, et al. Optimizing data consistency in UAV multispectral imaging for radiometric correction and sensor conversion models[J]. Remote sensing, 2025, 17(12):2001.
[50]
HAN Y, ZHANG J, BAI Y, et al. Ensemble learning-driven and UAV multispectral analysis for estimating the leaf nitrogen content in winter wheat[J]. Agronomy, 2025, 15(7):1621.
[51]
HU T, LIU Z, HU R, et al. Convolutional neural network-based estimation of nitrogen content in regenerating rice leaves[J]. Agronomy, 2024, 14(7):1422.
[52]
刘涛, 张寰, 王志业, 等. 利用无人机多光谱估算小麦叶面积指数和叶绿素含量[J]. 农业工程学报, 2021, 37(19):65-72.
[53]
陶新宇, 朱永基, 苏祥祥, 等. 基于无人机多光谱影像的冬小麦花前期氮素营养估测[J]. 安徽科技学院学报, 2023, 37(3):50-59.
[54]
李冰, 刘镕源, 刘素红, 等. 基于低空无人机遥感的冬小麦覆盖度变化监测[J]. 农业工程学报, 2012, 28(13):6.
[55]
刘建立, 李晓鹏. “基于无人机低空高精度遥感的冬小麦和夏玉米变量施肥管理模型”进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4):413.
[56]
GUO B B, FENG Y L, MA C, et al. Suitability of different multivariate analysis methods for monitoring leaf N accumulation in winter wheat using in situ hyperspectral data[J]. Computers and electronics in agriculture, 2022,198:107115.
[57]
张星宇, 张月, 夏晨真, 等. 基于无人机高光谱影像的玉米叶片氮素含量估算[J]. 遥感技术与应用, 2024, 39(4):927-939.
利用无人机采集影像进行田块尺度的作物氮素含量估算,因其具有无破坏性、时效性强等优势而备受关注。东北黑土区作为我国重要的粮食主产区,精准获取作物的氮素含量对国家粮食安全具有重要意义。研究基于玉米拔节期、吐丝期和成熟期的无人机高光谱影像,提取22种窄波段光谱指数,通过逐步回归方法对黑土区玉米叶片的氮素含量(Leaf Nitrogen Content, LNC)进行定量估算。结果表明:本研究中3个生育期的玉米LNC估算模型均具有较高的估算精度,其中拔节期的估算精度最高,其决定系数(R<sup>2</sup>)、均方根误差(RMSE)、归一化均方根误差(nRMSE)分别为0.76、0.31%、0.15%;吐丝期的估算精度最低,相应的3个指标分别为0.33、0.27%、0.19%。通过逐步回归模型筛选出在各生育期指示作用较强的光谱指数,拔节期为VARI(Vegetation Atmospherically Resistant Index)、DDI(Desertification Difference Index)、EVI(Enhanced Vegetation Index);吐丝期为MTCI(MERIS Terrestrial Chlorophyll Index)、SIPI(Simple Insensitive Pigment Index);成熟期为EVI(Enhanced Vegetation Index)、CCI(Canopy Chlorophyll Index)、NDVI(Normalized Difference Vegetation Index)。最终,利用在玉米各生育期估算精度最高的模型获得玉米叶片氮素含量的空间分布图,其空间分布特征与玉米LNC实测情况相一致,而氮肥施用量对不同田间处理的小区间玉米LNC的影响较大。综上,本研究结果可为东北黑土区玉米叶片氮素含量的无损、快速、动态监测提供数据基础与决策支持。
[58]
张玲, 陈新平, 贾良良. 基于无人机可见光遥感的夏玉米氮素营养动态诊断参数研究[J]. 植物营养与肥料学报, 2018, 24(1):261-269.
[59]
WANG Y, FENG C H, MA Y R, et al. Estimation of nitrogen concentration in walnut canopies in Southern Xinjiang based on UAV multispectral images[J]. Agronomy-basel, 2023, 13(6):1604.
[60]
郝琪, 陈天陆, 王富贵, 等. 基于无人机多光谱数据和氮素空间分异的玉米冠层氮浓度估算[J]. 作物学报, 2025, 51(1):189-206.
作物冠层氮素营养的遥感诊断对指导作物精准施氮, 提高作物氮效率和产量具有重要意义。本研究针对玉米冠层纵深大影响无人机估算氮浓度精度的问题, 基于2022年和2023年不同氮肥运筹处理下田间无人机多光谱数据和氮浓度实测数据, 分析玉米冠层氮浓度空间分布特征, 并利用随机森林算法确定估算冠层氮浓度的有效叶层。进一步结合随机森林算法和多光谱植被指数构建有效叶层氮浓度估算模型, 最终将有效叶层氮浓度转换到冠层尺度实现冠层氮浓度的估算。结果表明: (1) 九叶展期和大喇叭口期玉米冠层氮浓度表现为上层叶片&gt;中层叶片&gt;下层叶片, 吐丝期和乳熟期表现为中层叶片&gt;上层叶片&gt;下层叶片。(2) 各时期估算冠层氮浓度的有效叶层分别为下层、中层、中层和中层。与支持向量回归模型相比, 随机森林回归估算冠层氮浓度的精度较高。(3) 结合随机森林算法, 基于有效叶层氮浓度估算冠层氮浓度的平均RMSE、NRMSE和MAE分别为0.10%、4.41%和0.07%, 而直接基于植被指数估算冠层氮浓度的平均RMSE、NRMSE和MAE分别为0.19%、9.00%和0.15%。综上, 玉米冠层氮浓度存在空间分异特征, 估算冠层氮浓度时考虑基于随机森林和植被指数估算的有效叶层氮浓度能明显提高冠层氮浓度的估算精度。本研究确定的考虑空间分异的冠层氮浓度估算框架可为玉米氮素营养实时诊断提供理论支撑。
[61]
YU X J, HUO X F, QIAN L, et al. Combining UAV multispectral and thermal infrared data for maize growth parameter estimation[J]. Agriculture-basel, 2024, 14(11):2004.
[62]
许童羽, 白驹驰, 郭忠辉, 等. 基于无人机高光谱遥感的水稻氮营养诊断方法[J]. 农业机械学报, 2023, 54(2):189-197.
[63]
YU F H, BAI J C, JIN Z Y, et al. Estimating the rice nitrogen nutrition index based on hyperspectral transform technology[J]. Frontiers in plant science, 2023,14:1118098.
[64]
傅友强, 钟旭华, 黄农荣, 等. 基于无人机多光谱遥感的水稻冠层光谱特征和氮素营养关系研究[J]. 广东农业科学, 2021, 48(10):121-131.
[65]
FAN Y G, FENG H K, JIN X L, et al. Estimation of the nitrogen content of potato plants based on morphological parameters and visible light vegetation indices[J]. Frontiers in plant science, 2022, 13:1012070.
[66]
LI D, MIAO Y X, GUPTA S K, et al. Improving potato yield prediction by combining cultivar information and UAV remote sensing data using machine learning[J]. Remote sensing, 2021, 13(16):3322.
[67]
刘仕元, 梁晋, 王帅斌, 等. 基于无人机遥感的花生叶片叶绿素含量监测研究[J]. 花生学报, 2020, 49(2):21-27,35.
[68]
SISHODIA R P, RAY R L, SINGH S K. Applications of remote sensing in precision agriculture: a review[J]. Remote sensing, 2020, 12(19):3136.
[69]
JEONG M, PARK S, KWON S M, et al. Rapid detection of soybean nutrient deficiencies with YOLOv8s for precision agriculture advancement[J]. Scientific reports, 2025, 15(1):13810.
[70]
向友珍, 安嘉琪, 赵笑, 等. 基于无人机多光谱遥感的大豆生长参数和产量估算[J]. 农业机械学报, 2023, 54(8):230-239.
[71]
石浩磊, 曹红霞, 张伟杰, 等. 基于无人机多光谱的棉花多生育期叶面积指数反演[J]. 中国农业科学, 2024, 57(1):80-95.
【目的】叶面积指数(leaf area index,LAI)是表征作物长势、光合、蒸腾的重要指标。论文旨在研究不同生育期、多生育期无人机多光谱数据棉花LAI估测模型,明确不同生育期间棉花LAI估测模型变化规律,为实时掌握棉花长势并因地制宜进行田间科学管理提供依据。【方法】利用大疆精灵4多光谱无人机获取棉花现蕾期、初花期、结铃期、吐絮期多光谱图像和RGB图像。选用归一化差植被指数(NDVI)、绿度归一化差植被指数(GNDVI)、归一化差红边指数(NDRE)、叶片叶绿素指数(LCI)、优化的土壤调节植被指数(OSAVI)5种多光谱指数和修正红绿植被指数(MGRVI)、红绿植被指数(GRVI)、绿叶指数(GLA)、超红指数(EXR)、大气阻抗植被指数(VARI)5种颜色指数分别建立棉花各生育期及棉花生长多生育期数据集合,结合打孔法获取地面LAI实测数据,使用机器学习算法中偏最小二乘(PLSR)、岭回归(RR)、随机森林(RF)、支持向量机(SVM)、神经网络(BP)构建棉花LAI预测模型。【结果】覆膜棉花LAI随着生育期的变化呈现先增长后下降的趋势,现蕾期、初花期、结铃期内侧棉花叶面积指数均值均显著大于外侧(P&lt;0.05);选择的指数在各时期彼此间均呈显著相关(P&lt;0.05),总体而言,多光谱指数与颜色指数间的相关性随着生育期的进行而呈现下降趋势,选择的指数在各时期均与棉花LAI相关性显著(P&lt;0.05),多光谱指数相关系数介于0.35—0.85,颜色指数相关系数介于0.49—0.71,相关系数绝对值较大的指数多为多光谱指数,颜色指数与棉花LAI的相关系数绝对值较小;估测模型性能结果显示棉花各生育期模型中多光谱指数优于颜色指数,且各指数模型预测性能随着生育期的变化呈现一定规律性,NDVI是预测棉花LAI的最优指数。从模型结果上看,RF模型和BP模型在各生育期下获得了较高的估计精度。初花期LAI反演模型精度最高,最优模型验证集R<sup>2</sup>为0.809,MAE为0.288,NRMSE为0.120。多生育期最优模型验证集R<sup>2</sup>为0.386,MAE为0.700,NRMSE为0.198。【结论】棉花内外侧LAI在现蕾期、初花期、结铃期存在显著差异。在各生育期中,RF和BP模型是预测棉花LAI较优模型。NDVI在各指数中表现最好,是预测棉花LAI的最优指数。多生育期模型效果较单生育期明显下降,最优指数为GNDVI,最优模型为BP。本研究中预测棉花LAI的最优窗口期是初花期。研究结果可为无人机遥感监测棉花LAI提供理论依据和技术支持。
[72]
LIU S Y, ZHANG B, YANG W G, et al. Quantification of physiological parameters of rice varieties based on multi-spectral remote sensing and machine learning models[J]. Remote sensing, 2023, 15(2):453.
[73]
LI M H, LIU Y, LU X, et al. Integrating unmanned aerial vehicle-derived vegetation and texture indices for the estimation of leaf nitrogen concentration in drip-irrigated cotton under reduced nitrogen treatment and different plant densities[J]. Agronomy-basel, 2024, 14(1):120.
[74]
CHIN R, CATAL C, KASSAHUN A. Plant disease detection using drones in precision agriculture[J]. Precision agriculture, 2023, 24(5):1663-1682.
[75]
唐子竣, 向友珍, 王辛, 等. 利用相关矩阵法优化光谱指数的冬油菜氮素营养诊断[J]. 农业工程学报, 2023, 39(17):97-106.
[76]
王晗, 向友珍, 李汪洋, 等. 基于无人机多光谱遥感的冬油菜地上部生物量估算[J]. 农业机械学报, 2023, 54(8):218-229.
[77]
SHISHI L, XIAOHUI B, GEGE Z, et al. Remote estimation of leaf nitrogen concentration in winter oilseed rape across growth stages and seasons by correcting for the canopy structural effect[J]. Remote sensing of environment, 2023, 284:113348.
[78]
PAUT R, MORISON M V, RAYON B, et al. Critical nitrogen dilution curves for winter oilseed rape (Brassica napus L.) along the whole crop cycle: a bayesian analysis[J]. European journal of agronomy, 2025,168:127642.
[79]
LIU S, LI L, FAN H, et al. Real-time and multi-stage recommendations for nitrogen fertilizer topdressing rates in winter oilseed rape based on canopy hyperspectral data[J]. Industrial crops & products, 2020,154:112699.
[80]
魏勇. 基于无人机载高光谱雷达一体化成像的九叶青花椒树体氮营养无损诊断研究[D]. 重庆: 西南大学, 2024.
PDF(1192 KB)

Accesses

Citation

Detail

Sections
Recommended

/