Effects of Growth, Root Rot Disease, and Rhizosphere Microbial Community Structure of Panax notoginseng: A Combined Application of L-Lysine and Trichoderma harzianum

JIN Yongping, LIU Lianjin, REN Jing, FA Ze, LI Jinhua, WANG Huiling, WU Wentao, ZHU Youyong, HE Xiahong, GUO Liwei

Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (17) : 115-125.

PDF(2206 KB)
Home Journals Chinese Agricultural Science Bulletin
Chinese Agricultural Science Bulletin

Abbreviation (ISO4): Chin Agric Sci Bull      Editor in chief: Yulong YIN

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2206 KB)
Chin Agric Sci Bull ›› 2025, Vol. 41 ›› Issue (17) : 115-125. DOI: 10.11924/j.issn.1000-6850.casb2025-0135

Effects of Growth, Root Rot Disease, and Rhizosphere Microbial Community Structure of Panax notoginseng: A Combined Application of L-Lysine and Trichoderma harzianum

Author information +
History +

Abstract

To investigate the synergistic control effect of exogenous substances on Panax notoginseng root rot disease caused by Fusarium solani, this study conducted in vitro plate culture method and outdoor pot experiments using combined application of L-Lysine and Trichoderma harzianum, aiming to clarify the effects of different treatments on F. solani strain, P. notoginseng seedling growth, root rot disease control, and their regulation on rhizosphere microbial diversity. The results showed that: 1 μmol/L L-Lysine exhibited only 13.32% inhibition rate against F. solani, but significantly promoted the mycelial growth (23.05%) and spore production (173.61%) of T. harzianum. In pot experiments, the LTF1 treatment (1 μmol/L L-Lysine+T. harzianum+F. solani) demonstrated the optimal application effect. Compared with CK (F. solani), the survival rate, root fresh weight and root dry weight of P. notoginseng increased by 45.83%, 27.45% and 33.33% respectively, while the root rot incidence decreased by 88.89%. High-throughput sequencing analysis of rhizosphere microbes revealed impacts on both fungal and bacterial diversity, with the most significant reduction observed in fungal community abundance. Ascomycota (87.27%) and Actinobacteriota (24.54%) emerged as dominant phyla, while functional genera including Trichoderma (28.57%), Anaeromyxobacter (2.47%) and Paenibacillus (1.96%) showed significant enrichment, exhibiting negative correlations with root rot incidence. This study provides new ecological management strategies for controlling P. notoginseng root rot disease through combined application of L-Lysine and Trichoderma harzianum.

Key words

L-Lysine / Trichoderma harzianum / Panax notoginseng root rot disease / high-throughput sequencing / rhizosphere microorganism

Cite this article

Download Citations
JIN Yongping , LIU Lianjin , REN Jing , et al . Effects of Growth, Root Rot Disease, and Rhizosphere Microbial Community Structure of Panax notoginseng: A Combined Application of L-Lysine and Trichoderma harzianum[J]. Chinese Agricultural Science Bulletin. 2025, 41(17): 115-125 https://doi.org/10.11924/j.issn.1000-6850.casb2025-0135

References

[1]
崔秀明, 黄璐琦, 郭兰萍, 等. 中国三七产业现状及发展对策[J]. 中国中药杂志, 2014, 39(4):553-557.
[2]
张希, 王文倩, 许旭东, 等. 三七素的药理作用研究进展[J]. 现代药物与临床, 2019, 34(10):3192-3196.
[3]
毛忠顺, 龙月娟, 朱书生, 等. 三七根腐病研究进展[J]. 中药材, 2013, 36(12):2051-2054.
[4]
王景旭, 黄直俊, 梁传新, 等. 三七人工栽培研究现状与展望[J]. 湖北农业科学, 2021, 60(S2):8-12.
[5]
王勇, 马承铸, 陈昱君, 等. 土壤处理对三七根腐病控制作用研究[J]. 中国中药杂志, 2008(10):1213-1214.
[6]
RUI R, HEI J, LI Y, et al. Effects of humic acid fertilizer on the growth and microbial network stability of Panax notoginseng from the forest understorey[J]. Scientific reports, 2024, 14(1):17816.
[7]
于新, 田淑慧, 徐文兴, 等. 木霉菌生防作用的生化机制研究进展[J]. 中山大学学报(自然科学版), 2005(2):86-90.
[8]
庄敬华, 刘淑花, 王传世, 等. 木霉菌多功能生防菌剂对瓜类枯萎病的防治效果[J]. 北方园艺, 2005(5):90-91.
[9]
曹秋林, 李菁菁, 廉华, 等. 防治花生白绢病木霉菌的筛选及生防特性研究[J/OL]. 中国油料作物学报, 2025:1-10. https://doi.org/10.19802/j.issn.1007-9084.2024175.
[10]
常峻嘉, 盖佳鑫, 陶刚, 等. 哈茨木霉菌对烟草的促生及其黑胫病的诱导抗性评价[J]. 中国农业科技导报, 2024, 26(10):168-176.
[11]
YUN Z, ZHU F, LIU P, et al. Sweating treatment enhances citrus fruit disease resistance by inducing the accumulation of amino acids and salicylic acid-induced resistance pathway[J]. Physiologia plantarum, 2015, 155(2):109-125.
[12]
LIU Y X, LI Y C, BI Y, et al. Induction of defense response against Alternaria rot in Zaosu pear fruit by exogenous L-lysine through regulating ROS metabolism and activating defense-related proteins[J]. Postharvest biology and technology, 2021, 179(1):111567.
[13]
JIN L, CAI Y, SUN C, et al. Exogenous l-glutamate treatment could induce resistance against Penicillium expansum in pear fruit by activating defense-related proteins and amino acids metabolism[J]. Postharvest biology and technology, 2019, 150:148-157.
[14]
OLIVA M, HATAN E, KUMAR V, et al. Increased phenylalanine levels in plant leaves reduces susceptibility to Botrytis cinerea[J]. Plant science, 2020, 290:110289.
[15]
KUMAR V, HATAN E, BAR E, et al. Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack[J]. Plant journal, 2020, 104(1):226-240.
[16]
王敏. ε-聚赖氨酸对链格孢菌致病力和毒素合成的影响及其机制研究[D]. 济南: 齐鲁工业大学, 2023.
[17]
杨诺林, 邵改革, 张瑞颖, 等. 木质素磺酸钙对食用菌菌丝生长影响初探[J]. 食用菌, 2024, 46(1):11-14.
[18]
张玉锦, 周文丽, 崔梦娇, 等. 抗、感西瓜根系分泌物鉴定及对枯萎病菌生长的影响[J]. 中国瓜菜, 2022, 35(12):33-39.
[19]
LUO L F, ZHANG J X, YE C, et al. Foliar pathogen infection manipulates soil health through root exudate-modified rhizosphere microbiome[J]. Microbiology spectrum, 2022, 10(6):e02418-22.
[20]
WEI W, YANG M, LIU Y X, et al. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system[J]. Science of the total environment, 2018, 633:796-807.
[21]
李欣, 崔秀明, 刘迪秋, 等. 三七根中茄腐镰刀菌的实时荧光定量PCR检测[J]. 中草药, 2020, 51(5):1302-1307.
[22]
LIU C, ZHAO D, MA W, et al. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.[J]. Applied microbiology and biotechnology, 2016, 100(3):1421-1426.
[23]
CHEN S F, ZHOU Y Q, CHEN Y R, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics (Oxford, England), 2018, 34(17):i884-i890.
[24]
MAGOč T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics (Oxford, England), 2011, 27(21):2957-2963.
[25]
EDGAR ROBERT C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature methods, 2013, 10(10):996-998.
Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.
[26]
STACKEBRANDT E, GOEBEL B M. Taxonomic note: a place for DNA-DNA reassociation and 16SrRNA sequence analysis in the present species definition in bacteriology[J]. International journal of systematic and evolutionary microbiology, 1994, 44(4):846-849.
[27]
丁兆建, 漆艳香, 曾凡云, 等. 氨基酸影响尖孢镰孢菌古巴专化型厚垣孢子的形成[J]. 菌物学报, 2021, 40(6):1413-1426.
香蕉枯萎病是由尖孢镰孢菌古巴专化型Fusarium oxysporum f. sp. cubense(Foc)侵染引起的一种土传真菌病害,已严重威胁香蕉产业的健康发展。该病菌产生的厚垣孢子可在土壤中存活多年,是香蕉枯萎病的初侵染源。本研究通过氨基酸添加试验,证明添加甘氨酸可抑制厚垣孢子的形成;通过对该病菌厚垣孢子形成前期、初期、中期和后期的转录组分析,发现氨基酸合成通路中有93个基因的表达水平在厚垣孢子形成过程中发生了显著变化;In silico 分析表明其中10个基因参与调控真菌的氨基酸合成,11个基因参与调控真菌种的生长发育和产孢,19个基因参与调控真菌种的致病性和毒素产生。由此推测,氨基酸合成通路不仅与尖孢镰孢菌古巴专化型厚垣孢子的形成相关,其有可能参与调控该病菌的致病性。
[28]
张璐, 赵心雨, 郭宇燕, 等. L-半胱氨酸对稻曲病菌菌丝生长的抑制作用及其转录组分析[J]. 植物病理学报, 2022, 52(3):352-363.
分别应用3个稻曲病菌菌株ZJ09、XS14、XS1214,以及马铃薯蔗糖琼脂(potato sucrose agar,PSA)固体培养基、马铃薯葡萄糖琼脂(potato dextrose agar,PDA)固体培养基、TB<sub>3</sub>固体培养基和马铃薯蔗糖(potato sucrose,PS)液体培养基,进行固体或液体培养,实验结果表明补充0.250~0.500 g·L<sup>-1</sup> L-半胱氨酸对稻曲病菌菌丝生长具有明显的抑制作用,作用强度随L-半胱氨酸浓度提高而增加。分别采集未补充L-半胱氨酸和补充0.250 g·L<sup>-1</sup> L-半胱氨酸的PSA固体培养基平板上培养6 d的两组ZJ09菌丝进行转录组测序,得到2 138个差异表达基因(differentially expressed genes,DEGs),其中985个被L-半胱氨酸上调表达,1 153个被L-半胱氨酸下调表达。针对转录组测序结果获得的6个DEGs进行了RT-qPCR验证。GO富集结果显示,DEGs在细胞组分、分子功能和生物过程3个类别中均有富集,说明L-半胱氨酸抑制菌丝生长机制复杂。KEGG通路注释结果表明,L-半胱氨酸抑制菌丝生长可能主要与其影响内质网中蛋白质的加工有关。分析DEGs功能后还发现,L-半胱氨酸显著削弱菌丝中几丁质合酶D、细胞分裂控制蛋白6(cell division control protein,CDC6)及细胞分裂控制蛋白48(CDC48)编码基因的表达,推测可能与其对稻曲病菌菌丝生长的抑制作用有关。
[29]
康慧芳, 乔勇进, 刘晨霞, 等. L-半胱氨酸对葡萄交链孢霉腐病的抑制作用[J]. 食品科学, 2020, 41(23):228-235.
[30]
令阳, 邓丽莉, 姚世响, 等. L-半胱氨酸处理对采后李果实褐腐菌的抑制作用[J]. 食品科学, 2019, 40(9):256-261.
为探究L-半胱氨酸对采后李果实褐腐菌的抑制作用,本实验通过离体实验探究不同质量浓度(1、10、100、1000 mg/L)L-半胱氨酸对李果实褐腐菌Monilinia fructicola的抑制效果及可能的抑菌机制;采用损伤接种的方法评价L-半胱氨酸处理对李果实采后褐腐病的防治效果。结果表明:在所选的4 个L-半胱氨酸处理质量浓度中,只有1 000 mg/L L-半胱氨酸处理与对照相比可以显著延缓褐腐菌孢子的萌发,抑制菌丝体的生长,增加褐腐菌菌丝体胞外电导率和核酸物质的释放量,破坏褐腐菌孢子细胞膜的完整性(P<0.05);且在果实损伤接种实验中,1000 mg/L L-半胱氨酸处理可显著降低李果实的损伤接种发病率和病斑直径(P<0.05),而1、10、100 mg/L L-半胱氨酸处理对采后李果实褐腐病无明显控制效果。
[31]
GONG X Y, FU Y P, JIANG D H, et al. L-arginine is essential for conidiation in the filamentous fungus Coniothyrium minitans[J]. Fungal genetics and biology, 2007, 44(12):1368-1379.
[32]
REN Y, XUN W B, YAN H, et al. Functional compensation dominates the assembly of plant rhizospheric bacterial community[J]. Soil biology and biochemistry, 2020, 150:107968.
[33]
苏仪梅. 根系分泌物影响促生长细菌对甘蔗生长的效应[D]. 南宁: 广西大学, 2023.
[34]
赵卫松, 郭庆港, 崔钠淇, 等. 外源添加L-脯氨酸对棉花黄萎病发生及其根际土壤微生物群落的影响[J]. 中国农业科学, 2024, 57(11):2143-2160.
【目的】根系分泌物是植物与土壤微生物进行互作的信号媒介,对于植物病害发生和植株生长均具有重要调控功能。论文旨在明确棉花根系分泌物L-脯氨酸抵御棉花黄萎病发生的微生态机制,揭示L-脯氨酸介导的根际微生物与棉花黄萎病发生的互作关系,为构建生物防治土传病害的有益菌群提供新视角。【方法】通过温室盆栽试验,以外源添加不同浓度的L-脯氨酸(0、50、100、200和400 mmol·L<sup>-1</sup>)为试验处理,采用实时荧光定量PCR(real-time qPCR)和宏基因组测序技术分别测定不同处理的土壤中大丽轮枝菌(Verticillium dahliae)DNA拷贝数量和土壤微生物群落结构及功能,采用主成分分析比较不同处理的根际土壤微生物群落结构,利用冗余分析研究土壤养分因子与微生物群落结构的相关性,利用斯皮尔曼相关分析研究微生物群落结构功能代谢途径的相关性。【结果】与空白对照相比,低浓度(50 mmol·L<sup>-1</sup>)L-脯氨酸处理不能够减轻棉花黄萎病的发生,高浓度(100、200和400 mmol·L<sup>-1</sup>)L-脯氨酸处理的病情指数分别下降22.51%、60.23%和64.23%。qPCR结果表明,L-脯氨酸处理不能够显著降低土壤中大丽轮枝菌拷贝数量。宏基因组测序分析表明,L-脯氨酸处理后细菌多样性Shannon指数显著增加,真菌多样性Shannon指数呈下降趋势。在属水平上,L-脯氨酸处理后类诺卡氏菌属(Nocardioides)、溶杆菌属(Lysobacter)、节杆菌属(Arthrobacter)、Phycicoccus、假单胞菌属(Pseudomonas)和毛霉菌属(Mucor)的相对丰度呈上升趋势。线性判别分析表明,除浓度为100 mmol·L<sup>-1</sup>的L-脯氨酸外,外源添加L-脯氨酸处理后根际土壤微生物KEGG通路的富集情况发生改变。冗余分析表明,细菌群落组成受pH、电导率、硝态氮、铵态氮和有机质显著影响,而真菌群落组成与铵态氮存在显著相关性。Spearman相关分析表明,细菌的KEGG代谢通路与pH、有机质、铵态氮含量呈负相关关系,而与电导率和硝态氮呈正相关关系;真菌的大部分KEGG代谢通路与土壤养分的相关性较差。【结论】外源添加适量L-脯氨酸通过改变土壤细菌群落结构和功能,增加有益微生物的相对丰度,从而影响棉花黄萎病的发生,但其不能够改变病原菌数量。同时,根际细菌群落组成和功能均与土壤养分存在相关性。
[35]
韩佳怡, 周景芝, 林凯特, 等. 根腐病对白术内生菌及根际土壤微生物群多样性的影响[A].中国植物病理学会. 中国植物病理学会2024年学术年会论文集[C]. 浙江中医药大学药学院, 2024:71.
[36]
王馨. 木霉菌肥与氨基酸混施对防控苹果连作障碍效果的研究[D]. 泰安: 山东农业大学, 2022.
[37]
LEE S M, KONG H G, SONG G C, et al. Disruption of firmicutes and actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The isme journal, 2021, 15(1):330-347.
[38]
于文清, 肖俊杰, 刘文志, 等. 类芽胞杆菌(Paenibacillus)对植物促生御病机理研究进展[J]. 微生物学杂志, 2020, 40(6):102-112.
PDF(2206 KB)

Accesses

Citation

Detail

Sections
Recommended

/